Исследование ассортимента и качества хлеба, вырабатываемого ОАО «Кемеровохлеб»

Автор работы: Пользователь скрыл имя, 14 Марта 2013 в 15:34, дипломная работа

Краткое описание

Товар, являясь связующим звеном между потребителем и производителем, формирует вокруг себя различные экономические системы, которые являются лишь производными от него, и создают надстройку. Стоит убрать товар из процесса купли - продажи и вся остальная сложная экономическая надстройка (экономика торговли, менеджмент, маркетинг, финансы и кредит, бухучет, аудит и другая надстроечная инфраструктура) станет ненужной. Таким образом, являясь базисом товарно-денежных отношений, товар и его свойства требуют самого пристального изучения и исследования. И сегодня, в условиях формирования новых рыночных отношений, у товара проявляются все новые и новые свойства, о которых ранее нельзя было даже подумать.

Прикрепленные файлы: 1 файл

issledovanie assortimenta i kachestva hleba OAO Kemerovohleb.doc

— 709.00 Кб (Скачать документ)

Пентозаны муки могут быть растворимыми и нерастворимыми в воде.

Часть пентозанов муки способна легко набухать и растворяться в воде (пептизироваться), образуя очень вязкий слизеобразный раствор. Поэтому водорастворимые пентозаны муки часто называют слизями. Именно слизи оказывают наибольшее влияние на реологические свойства пшеничного и ржаного теста. Из общего количества пентозанов пшеничной муки лишь 20 - 24% являются водорастворимыми. В ржаной муке водорастворимых пентозанов больше (около 40%). Пентозаны, нерастворимые в воде, в тесте интенсивно набухают, связывая значительное количество воды.

Белки - это органические высокомолекулярные соединения, состоящие из аминокислот. В молекуле белка аминокислоты соединены между собой пептидными связями. Разнообразие белков определяется последовательностью размещения остатков аминокислот в полипептидной цепи (первичная структура белка). Кроме того, существуют вторичная структура белка, характеризующая тип укладки полипептидных цепей (правая α-спираль, α-структура и β-изгиб), третичная структура белка, характеризующая расположение его полипептидной цепи в пространстве, и четвертичная структура, характеризующая белки, в состав которых входит несколько полипептидных цепей, связанных между собой нековалентными связями.

В состав белков пшеничной и ржаной муки входят белки  простые (протеины), состоящие только из аминокислотных остатков, и сложные (протеиды). Сложные белки могут включать ионы металлов, пигменты, образовывать комплексы с липидами, нуклеиновыми кислотами, а также ковалентно связывать остаток фосфорной или нуклеиновой кислоты, углеводов. Их называют металлопротеиды, хромопротеиды, липопротеиды, нуклеопротеиды, фосфопротеиды, гликопротеиды.

Технологическая роль белков муки в приготовлении  хлеба велика. Структура белковых молекул и физико-химические свойства белков определяют свойства теста, влияют на форму и качество хлеба. Белки обладают рядом свойств, которые особенно важны для приготовления хлеба.

Содержание  белковых веществ в пшеничной  и ржаной муке колеблется от 9 до 26% в  зависимости от сорта зерна и  условий его выращивания. Для  белков характерны многие физико-химические свойства, из которых более всего важны растворимость, способность к набуханию, к денатурации и гидролизу.

По растворимости  белки разделяют на альбумины - растворимые  в воде, проламины - растворимые в  спирте, глютелины - растворимые в  слабых щелочах и глобулины - растворимые в солевых растворах. Белки пшеничной и ржаной муки представлены в основном проламинами (глиадин) и глютелинами (глютенин). Содержание этих белков составляет 2/3 или 3/4 от всей массы белков муки.

Глиадин и глютенин в воде нерастворимы и поэтому при отмывании клейковины являются основными ее компонентами. В связи с этим их называют клейковинными белками. Эти белки находятся в эндосперме зерна и поэтому их больше содержится в муке высших сортов. Альбумин и глобулин содержатся в белке зародыша и алейронового слоя зерна, поэтому их больше содержится в муке низких сортов.

В сырой клейковине содержится 65 - 70% влаги и 35 - 30% сухих  веществ, в сухой клейковине 90% белков и 10% крахмала, жира, сахара и других веществ муки, поглощенных белками при набухании. Количество сырой клейковины колеблется в широких пределах (15 - 50% от массы муки). Чем больше белков содержится в муке, и чем сильнее их способность к набуханию, тем больше получится сырой клейковины. Качество клейковины характеризуется цветом, эластичностью (способность клейковины восстанавливать свою форму после растягивания), растяжимостью (способность растягиваться на определенную длину) и упругостью (способность оказывать сопротивление при деформации).

Количество  клейковины и ее свойства определяют хлебопекарное достоинство муки и качество хлеба. Желательно, чтобы клейковина была эластичной, в меру упругой и имела среднюю растяжимость.

Значительная  часть белков муки в воде не растворяется, но хорошо в ней набухает. Белки особенно хорошо набухают при температуре около 30°С, поглощая при этом воды в 2 - 3 раза больше их собственной массы.

Необратимая денатурация (изменение естественной структуры  белка) происходит под действием  некоторых реагентов или при  нагревании свыше 60°С. Денатурированный белок теряет способность к растворимости и набуханию. Начальную стадию денатурации белков иногда специально вызывают при сушке и горячем кондиционировании зерна, чтобы несколько укрепить слабую клейковину. Значительная денатурация портит хлебопекарные свойства белковых веществ (клейковина становится неэластичной и короткорвущейся). Во время выпечки хлеба белки денатурируются полностью, свернувшийся белок образует при этом прочный каркас, закрепляющий форму изделия.

Под действием  протеолитических ферментов сложная структура белковой молекулы упрощается, уменьшается ее способность к набуханию, увеличивается растворимость белков.

Белки ржаной муки по составу и свойствам отличаются от белков пшеницы. Около половины ржаных белков растворимы в воде или в растворах солей. Белки ржаной муки имеют большую пищевую ценность, чем пшеничные (содержат много незаменимых аминокислот), однако технологические свойства их значительно ниже.

Белковые вещества ржи клейковину не образуют. В ржаном тесте большая часть белков находится в виде вязкого раствора, поэтому ржаное тесто лишено упругости и эластичности, свойственных пшеничному тесту.

Жиры являются сложными эфирами глицерина и  высших жирных кислот. В состав жиров  муки входят главным образом жидкие ненасыщенные кислоты (олеиновая, линолевая и линоленовая). Содержание жира в разных сортах пшеничной и ржаной муки 0,8 - 2,0% на сухое вещество. Чем ниже сорт муки, тем выше содержание жира в ней.

К жироподобным веществам относятся фосфолипиды, пигменты и некоторые витамины. Жироподобными эти вещества называются потому, что они, как и жиры, в воде не растворяются, но растворимы в органических растворителях.

Фосфолипиды имеют  сходное с жирами строение, но, кроме  глицерина и жирных кислот, содержат еще фосфорную кислоту и азотистые вещества. В муке содержится 0,4 - 0,7% фосфолипидов. Красящие вещества муки (пигменты) состоят из хлорофилла и каротиноидов. Хлорофилл, содержащийся в оболочках, - вещество зеленого цвета, каротиноиды имеют желтую и оранжевую окраску. При окислении каротиноидные пигменты обесцвечиваются. Это свойство проявляется при хранении муки, которая светлеет в результате окисления кислородом воздуха каротиноидных пигментов.

Ферменты - вещества белковой природы, способные катализировать (ускорять) различные реакции. Ферменты вырабатываются живыми клетками в ничтожных  количествах, однако ввиду высокой  активности вызывают изменения в  огромной массе вещества. Действие ферментов специфично. Каждый фермент катализирует только определенную реакцию для одного вещества, а чаще для группы веществ сходного строения.

Все ферменты чувствительны  к температуре и реакции среды. Для каждого фермента существует значение температуры и кислотности среды, при которых он наиболее активен (оптимальные условия). При определенных значениях температуры и кислотности фермент разрушается (инактивируется). Нагревание до 70 - 80° С разрушает почти все ферменты, они свертываются и теряют каталитические свойства. На активность многих ферментов влияет присутствие определенных химических веществ. Некоторые из них активируют ферменты (активаторы), другие - снижают их активность (ингибиторы).

В зерне находятся  разнообразные ферменты, сосредоточенные  главным образом в зародыше и периферийных (краевых) частях зерна. Поэтому в муке низших сортов содержится больше ферментов, чем в муке высших сортов. Ферментная активность разных партий одного и того же сорта муки неодинакова. Она зависит от условий произрастания, хранения, сушки и кондиционирования зерна. Активность ферментов проросшего зерна повышенная. Прогревание зерна при высушивании или кондиционирование снижают ферментную активность. В процессе хранения зерна и муки она также несколько уменьшается.

Ферменты активны только в растворе, поэтому при хранении сухого зерна и муки их действие почти не проявляется. После замеса полуфабрикатов многие ферменты начинают катализировать реакции разложения сложных веществ муки. Активность, с которой происходит разложение сложных нерастворимых веществ муки на более простые водорастворимые вещества под действием ее собственных ферментов, называется автолитической активностью (автолиз - саморазложение).

Автолитическая  активность муки - важный показатель ее хлебопекарных свойств. Как низкая, так и высокая автолитическая активность муки отрицательно влияют на качество теста, хлеба. Желательно, чтобы автолитический процесс разложения белков и крахмала теста происходил с определенной, умеренной скоростью. Для того чтобы регулировать автолитические процессы в производстве хлеба, необходимо знать свойства важнейших ферментов муки, действующих на белки, крахмал и другие компоненты муки.

Амилолитические ферменты (амилазы). Амилолитические  ферменты (α- и β-амилазы) действуют  на крахмал. α-Амилаза превращает крахмал главным образом в декстрины, образуя небольшое количество мальтозы. β-Амилаза действует на крахмал или на декстрины, образуя значительное количество мальтозы. При совместном действии обеих амилаз крахмал гидролизуетсяется почти полностью, так как декстрины осахариваются сравнительно легко. Особенно легко осахаривается клейстеризованный крахмал, так как рыхлые набухшие крахмальные зерна быстро поддаются действию ферментов.

Чувствительность  α- и β-амилаз к условиям среды  различна, α-Амилаза более чувствительна к кислотности среды и менее чувствительна к температуре по сравнению с β-амилазой. Температура инактивации этих ферментов в зависимости от кислотности среды соответственно равна 70 - 95 и 60 - 84° С. Оптимальная температура осахаривания пшеничного крахмала под совместным действием α- и β-амилаз 63-65° С. В кислой среде амилазы инактивируются при более низкой температуре.

В ржаной муке нормального  качества всегда содержится α-амилаза, что значительно влияет на ее хлебопекарные свойства.

    1. Хлебопекарные свойства пшеничной и ржаной муки

Пшеничная мука хорошего хлебопекарного качества при  правильном проведении технологического процесса позволяет получать хлеб достаточного объема, правильной формы, с нормально  окрашенной коркой, эластичным мякишем, вкусный и ароматный. Хлебопекарные свойства пшеничной муки обусловлены следующими показателями:

    1. газообразующей способностью;
    2. силой муки;
    3. цветом муки и способностью ее к потемнению;
    4. крупностью помола.

Газообразующая  способность муки - это способность приготовленного из нее теста образовывать диоксид углерода.

При спиртовом  брожении, вызываемом в тесте дрожжами, сбраживаются содержащиеся в нем  сахариды. Молекула простейшего сахара гексозы (глюкозы или фруктозы) зимазным комплексом ферментов дрожжевой клетки разлагается с образованием двух молекул этилового спирта и двух молекул диоксида углерода.

Дрожжевые клетки в пшеничном тесте получают необходимую  для их жизнедеятельности энергию  за счет сбраживания моносахаридов. Этот тип обмена веществ дрожжей называется анаэробным. Процесс сбраживания углеводов в отсутствии кислорода с образованием конечных продуктов - этилового спирта и диоксида углерода - осуществляется через целый ряд промежуточных продуктов с участием многочисленных ферментов. Фактический баланс спиртового брожения, вызываемого дрожжами, при рН 6,0 (характерная для пшеничного теста) включает продукты, перечисленные в таблице 2.

 

Таблица 2

Фактический баланс спиртового брожения, вызываемого дрожжами при рН 6,0

 

Продукт

Выход продукта на 100 ммоль сброженной глюкозы

2,3 - Бутиленгликоль

0,53

Ацетон

-

Этиловый спирт

160,0

Глицерин

16,2

Масляная кислота

0,36

Уксусная кислота

4,03

Муравьиная кислота

0,82

Янтарная кислота

0,49

Молочная кислота

1,63

Диоксид углерода

177,0

Количество сброженной глюкозы

98,0


 

Данные, представленные в таблице, показывают, что больше всего в процессе спиртового брожения образуется этилового спирта и диоксида углерода и поэтому именно по количеству этих продуктов можно судить об интенсивности спиртового брожения. Следовательно, газообразующая способность муки характеризуется количеством диоксида углерода в мл, образующегося за 5 ч брожения теста, приготовленного из 100 г муки, 60 мл воды и 10 г дрожжей при температуре 30°С.

Газообразующая способность  зависит от содержания собственных  сахаров в муке и от сахарообразующей способности муки.

Содержание сахаров в  муке зависит от ее выхода. Чем выше выход муки, тем больше в ней  содержится сахаров. Собственные сахара муки (глюкоза, фруктоза, сахароза, мальтоза и др.) сбраживаются в самом начале процесса брожения. А для получения хлеба наилучшего качества необходимо иметь интенсивное брожение, как при созревании теста, так и при окончательной расстойке и в первый период выпечки. Кроме того, для реакции меланоидинообразования (образования окраски, корки, вкуса и запаха хлеба) также необходимы моносахариды. Поэтому более важным является не содержание Сахаров в муке, а ее способность образовывать сахара в процессе созревания теста.

Информация о работе Исследование ассортимента и качества хлеба, вырабатываемого ОАО «Кемеровохлеб»