Квантовые компьютеры

Автор работы: Пользователь скрыл имя, 09 Декабря 2013 в 02:44, реферат

Краткое описание

Гипотеза Макса Планка, высказанная им в 1900 году, о том, что любая энергия поглощается или испускается только порциями, которые состоят из целого числа квантов с энергией ε таких, что эта энергия пропорциональна частоте ν с коэффициентом пропорциональности, положила основу и образовала науку известною сейчас как Квантовая механика, особо бурно развивающуюся в двадцатом веке. Одна из особенностей квантовой механики - это трудность её понимания для обывателя. Во-первых, некоторые свойства квантовых систем кажутся нам непривычными (невозможность одновременно измерить координату и импульс, несуществование траектории частицы, вероятностное описание, дискретность наблюдаемых величин). Это вовсе не значит, что они неверны: это означает, что наша повседневная интуиция никогда не сталкивалась с такими процессами.

Прикрепленные файлы: 1 файл

Реферат.doc

— 189.00 Кб (Скачать документ)

Ученые, сами того не предполагая, уже создали квантовый компьютер. Его первый «опытный образец» — это импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения. Спины ядер, входящих в состав атомов, в свою очередь образующих исследуемую в ЯМР-спектрометре молекулу — это Q-биты, единицы измерения квантовой информации. Каждое ядро имеет свою частоту резонанса в данном магнитном поле. При воздействии импульсом на резонансной частоте одного из ядер оно начинает эволюционировать, остальные же ядра «молчат». Для того чтобы заставить эволюционировать второй атом, надо взять другую частоту и дать импульс на ней. Иными словами, процесс вычислений управляется импульсами переменного магнитного поля, — нужно только написать алгоритм поставленной задачи. Например, 1000 в степени 3 (то есть миллиард) операций в алгоритме Шора для 1000-разрядного числа — это миллиард воздействий на отдельные спины и на их пары. При этом в молекуле есть прямая связь между спинами, и поэтому она является идеальной заготовкой для квантового компьютера, а сам спектрометр — просто готовый «процессор» для этого компьютера. Однако в настоящее время удается работать с системами с общим числом спинов не более пяти-семи, в то время как для решения полномасштабных задач их необходимо порядка 1000. Подобного рода работы в России не ведутся, ибо, как считают наши ученые, принципиально невозможно увеличить количество спинов до требуемого числа.

В предложенном способе построения квантового компьютера кубитами выступают  спины - ядер водорода (протоны) и углерода 13С в молекулах жидкости. Так, в молекуле трихлорэтилена (Рис. 3.1) спины ядер двух атомов 13С и одного протона образуют три кубита. Два атома 13С химически неэквивалентны и поэтому имеют различные частоты ядерного магнитного резонанса A и B в заданном внешнем постоянном магнитном поле B0, протон будет иметь третью резонансную частоту C. Подавая импульсы внешнего переменного магнитного поля мы селективно управляем квантовой эволюцией любого из этих спинов.

Главным преимуществом такого компьютера является то, что огромное число  практически независимых молекул-компьютеров  жидкости действует, обеспечивая тем  самым возможность управления ими  с помощью хорошо известных в  технике ядерного магнитного резонанса (ЯМР) операций над макроскопическим объемом жидкости. Последовательности радиочастотных импульсов осуществляют глобальные унитарные преобразования состояний соответствующих ядерных спинов для всех молекул-компьютеров. Индивидуальное обращение к отдельным кубитам заменяется одновременным обращением к соответствующим кубитам во всех молекулах большого ансамбля. Компьютер такого рода получил название ансамблевого ЯМР квантового компьютера (bulk-ensemble quantum computer). Замечательно, что он может в принципе работать при комнатной температуре. Время декогерентизации квантовых состояний ядерных спинов в жидкости достаточно велико. Оно может составлять несколько секунд.

В области ЯМР квантовых компьютеров  на органических жидкостях к настоящему времени достигнуты наибольшие успехи. Они связаны в основном с хорошо развитой импульсной техникой ЯМР-спектроскопии, обеспечивающей выполнение различных операций над когерентными суперпозициями состояний ядерных спинов и с возможностью использования для этого стандартных ЯМР-спектрометров, работающих при комнатных температурах.

Экспериментально на ЯМР квантовых  компьютерах были осуществлены алгоритм Гровера поиска данных, квантовое  фурье-преобразование, квантовая коррекция  ошибок, квантовая телепортация, квантовое моделирование и другие операции.

Основными ограничениями для этого  направления являются:

Смешанный характер исходного состояния  кубитов, что требует использования  определенных неунитарных операций для приготовления начального состояния.

Число ядерных спинов-кубитов в  отдельной молекуле с достаточно различающимися резонансными частотами L ограничено.

Однокубитовые и двукубитовые квантовые  операции являются относительно медленными.

Эти и другие ограничения приводят к тому, что ЯМР квантовые компьютеры на молекулах органической жидкости не смогут иметь число кубитов, значительно больше десяти. Их следует рассматривать лишь как прототипы будущих квантовых компьютеров, полезные для отработки принципов квантовых вычислений и проверки квантовых алгоритмов.

3.3. Твердотельные ЯМР квантовые компьютеры

Важные перспективы открываются  перед направлением твердотельных ЯМР квантовых компьютеров.

Для этого в 1998 г. австралийским  физиком Б.Кейном было предложено использовать в качестве кубитов обладающие ядерным спином 1/2 донорные атомы с изотопами 31P, которые имплантируются в кремниевую структуру, Это предложение, которое пока остается нереализованным, открывает потенциальную возможность создания квантовых вычислительных устройств с практически неограниченным числом кубитов.

В рассматриваемом варианте предполагается использовать температуры достаточно низкие для того, чтобы электроны  донорных атомов занимали только нижнее спиновое состояние в магнитном  поле. В полях B ³ 2 Тл это соответствует температурам T £ 0,1 K, гораздо более низким, чем температура вымораживания электронных состояний доноров, которые будут поэтому оставаться в неионизированном основном орбитальном S-состоянии.

Каждый донорный атом с ядерным  спином - кубит в полупроводниковой структуре предполагается расположить регулярным образом с достаточной точностью под "своим" управляющим металлическим затвором (затвор A), отделенным от поверхности кремния тонким диэлектриком (например, окисью кремния толщиной порядка нескольких нанометров). Эти затворы образуют линейную решетку произвольной длины с периодом l (Рис. 3.2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

С помощью электрического поля, создаваемого потенциалом затворов A, можно изменять распределение электронной плотности вблизи ядра в основном состоянии, изменяя, соответственно, резонансную частоту каждого ядерного спина, которая определяется сверхтонким взаимодействием его с электронным спином. Это позволяет осуществлять индивидуальное управление квантовыми операциями путем селективного воздействия резонансных радиочастотных импульсов на ядерные спины определенных доноров.

Величиной косвенного взаимодействия между ядерными спинами соседних доноров, которое обеспечивает выполнение двухкубитовых операций, предлагается управлять с помощью затворов J, расположенных между затворами A. Это возможно, если характерные размеры полупроводниковой структуры лежат в нанометровой области. Для формирования таких структур предполагается воспользоваться приемами современной нанотехнологии.

Для того чтобы исключить взаимодействие ядерных спинов доноров с окружением сам кремний и окисел кремния должен быть достаточно хорошо очищен от изотопа 29Si, обладающего спином I = 1/2, который содержится в количестве 4,7% в естественном кремнии. Возможно использование и других материалов.

 

4. Перспективы развития квантовых компьютеров

4.1. Квантовая связь и криптография

Из обширной области разработки квантовых методов связи и  криптографии мы коснемся последствий  создания квантовых компьютеров  и систем связи для двух современных наиболее популярных криптосистем: для системы с открытым ключом (RSA система, Rivest, Sharnir, Adieman, 1977) и системы с ключом одноразового пользования (Vernam, 1935).

Сразу отметим, что в основе системы RSA лежит предположение о том, что решение математической задачи о разложении больших чисел на простые множители на классических компьютерах невозможно; оно требует экспоненциально большого числа операций и астрономического времени.

Квантовый алгоритм Шора дает возможность  вычислить простые множители  больших чисел за практически приемлемое время и взломать шифры RSA криптосистем. Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известных на сегодня вычислительных алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000-значное - за 1025(!) лет, в то время как согласно оценкам, квантовый компьютер с памятью объемом всего лишь около 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители в течение всего нескольких часов! Таким образом, для RSA криптосистем квантовый компьютер - плохая новость.

Для криптосистем с ключом одноразового пользования квантовые методы связи  оказываются хорошей новостью: они  позволяют обнаружить наличие подслушивания при передаче ключа. Эта возможность основана на квантовом принципе неопределенности Гейзенберга, который гласит, что измерение изменяет состояние измеряемой квантовой системы. Пусть ключ передается по световолокну с помощью фотонов, и информация закодирована в поляризации фотонов. Тогда подслушивание заключается в перехвате и измерении поляризации пересылаемых фотонов; после измерения они пересылаются адресату. При наличии подслушивания адресат обнаружит, что 25% фотонов приходят к нему с "неправильной" поляризацией. Если этих ошибок нет, то передача ключа не подслушивается, и им можно пользоваться. Таким образом, квантовые методы обеспечивают гарантированную секретность ключа одноразового пользования. Эксперименты по передаче ключа выполнены на расстояния до 40 км.

Квантовые каналы связи дают и другие возможности.

1. С помощью одного кубита  можно передавать 2 бита информации ("плотное квантовое кодирование").

2. Возможна передача неизвестного  квантового состояния ("квантовая  телепортация") по классическому каналу, если абоненты связи предварительно поделили коррелированную пару квантовых частиц. Потенциальные возможности применения этих феноменов еще не выяснены

4.2. Будущее квантовых компьютеров

Можно ожидать, что в будущем  появятся также комбинированные варианты твердотельных квантовых компьютеров, использующих, например, в одной структуре и ядерные спины, и квантовые точки с электронными спинами, а также комбинированные методы обращения к кубитам, такие как двойной электрон-ядерный магнитный резонанс, динамическая поляризация ядерных спинов и оптическое детектирование ядерного магнитного резонанса.

Таким образом, весьма возможно, что  в перспективе квантовые компьютеры будут изготавливаться с использованием традиционных методов микроэлектронной технологии и содержать множество управляющих электродов, напоминая современный микропроцессор. Для того чтобы снизить уровень шумов, критически важный для нормальной работы квантового компьютера, первые модели, по всей видимости, придется охлаждать жидким гелием. Вероятно, первые квантовые компьютеры будут громоздкими и дорогими устройствами, не умещающимися на письменном столе и обслуживаемыми большим штатом системных программистов и наладчиков оборудования. Доступ к ним получат сначала лишь государственные структуры, затем богатые коммерческие организации. Но примерно так же начиналась и эра обычных компьютеров.

А что же станет с классическими  компьютерами? Отомрут ли они? Вряд ли. И для классических, и для  квантовых компьютеров найдутся свои сферы применения. Хотя, по всей видимости, соотношение на рынке будет все же постепенно смещаться в сторону последних.

Внедрение квантовых компьютеров  не приведет к решению принципиально  нерешаемых классических задач, а лишь ускорит некоторые вычисления. Кроме  того, станет возможна квантовая связь - передача кубитов на расстояние, что приведет к возникновению своего рода квантового Интернета. Квантовая связь позволит обеспечить защищенное (законами квантовой механики) от подслушивания соединение всех желающих друг с другом. Ваша информация, хранимая в квантовых базах данных, будет надежнее защищена от копирования, чем сейчас. Фирмы, производящие программы для квантовых компьютеров, смогут уберечь их от любого, в том числе и незаконного, копирования.

4.3. Практическое применение квантовых компьютеров

Для практического применения пока не создано ни одного квантового компьютера, который бы удовлетворял всем вышеперечисленным  условиям. Однако во многих развитых странах  разработке квантовых компьютеров  уделяется пристальное внимание и в такие программы ежегодно вкладываются десятки миллионов долларов.

На данный момент наибольший квантовый  компьютер составлен всего из семи кубитов. Этого достаточно, чтобы  реализовать алгоритм Шора и разложить  число 15 на простые множители 3 и 5.

Если же говорить о возможных моделях квантовых компьютеров, то их, в принципе, довольно много. Первый квантовый компьютер, который был создан на практике, — это импульсный ядерный магнитно-резонансный (ЯМР) спектрометр высокого разрешения, хотя он, конечно же, как квантовый компьютер не рассматривался. Лишь когда появилась концепция квантового компьютера, ученые поняли, что ЯМР-спектрометр представляет собой вариант квантового компьютера.

Канадская компания D-Wave заявила в  феврале 2007 года о создании образца  квантового компьютера, состоящего из 16 кубит (устройство получило название Orion). Процессор Orion изготавливался по традиционной полупроводниковой технологии, однако на подложку наносятся кольца из ниобия, который охлаждается до температуры, в 250 раз меньше температуры межзвёздного пространства, чтобы достичь эффекта сверхпроводимости. Квантовый процессор D-Wave зафиксирован в нижней части блока фильтрации и заморозки; вся структура погружается в жидкий гелий, охлаждённый до 3 кельвинов, а затем блок охлаждения снижает температуру чипа до 10 милликельвинов. Всё это намного превосходит большинство других разработок квантовых компьютеров, причём D-Wave смогла создать компьютер, используя технологии производства полупроводников и существующие полупроводниковые заводы, не прибегая к помощи оптических схем, квантовых точек, сдерживания лазера или других экзотических технологий производства. D-Wave работает и над второй половиной проблемы, а именно над инструментами программирования для создания приложений, способных получить преимущество от возможностей, которые обещают дать квантовые вычисления. К настоящему времени уже появились первые языки программирования для квантового компьютера, в частности, QCL (Quantum Computation Language). Как пишут разработчики языка в документации, квантовые вычисления сейчас все еще рассматривают как специальную дисциплину в рамках теоретической физики, несмотря на то что она имеет много общего с классической информатикой. Все эти теоретические инструменты не имеют ничего общего с классическими языками программирования, а изложение самих основ квантовых вычислений часто слишком усложнено.

Информация о работе Квантовые компьютеры