Тригонометрические уравнения в школьном курсе алгебры

Автор работы: Пользователь скрыл имя, 23 Декабря 2012 в 13:19, реферат

Краткое описание

В курсе алгебры и начала анализа в 10 классе начинается изучение темы «Решение тригонометрических уравнений и неравенств». На уроках мы рассмотрели приёмы решения тригонометрических уравнений и неравенств, но их оказалось немного. Я задумалась над тем, а есть ли другие приёмы решения тригонометрических уравнений. И выбирая в 11 классе экзамен по выбору, я решила исследовать этот вопрос и попытаться выяснить: что же предлагает (по типам) школьный курс алгебры и начал анализа, выпускной экзамен за курс средней полной школы.

Содержание

Введение
1. История тригонометрии
1.1 История тригонометрии как науки
1.2 Тригонометрия как учебный предмет
1.3 Тригонометрия в школе до 1966 года
1.4 Тригонометрия в школе после 1966 года
1.5 тригонометрия в современной школе
2. Тригонометрические уравнения в школьном курсе алгебры
2.1 Простейшие тригонометрические уравнения
2.2 Тригонометрические уравнения, сводящиеся к квадратным
2.3 Однородные уравнения
2.4 Уравнения, решаемые разложением на множители
2.5 Задачи на повторение
3. Тригонометрические уравнения на экзаменах
3.1 Специфика выпускного экзамена за курс средней полной школы
3.2 Тригонометрические уравнения на выпускном экзамене
3.2.1 Тригонометрические уравнения на обязательном уровне обучения
3.2.2 Тригонометрические уравнения из раздела 4
3.2.3 Тригонометрические уравнения повышенной сложности
Заключение
Используемая литература

Прикрепленные файлы: 1 файл

Тригонометрические уравнения в школьном курсе алгебры.doc

— 620.00 Кб (Скачать документ)

А вот в 9-м классе (десятилетней школы) данной программы тригонометрия  начинает обретать черты отдельной школьной дисциплины. Внимание сосредотачивается на четырех тригонометрических функциях: синус, косинус, тангенс и котангенс. Секанс и косеканс даются в ознакомительном порядке. В 10-м классе предусматривается "решение косоугольных треугольников, основанное на теоремах синусов, косинусов и тангенсов с применением в соответствующих случаях различных таблиц".

Роль тригонометрического  материала в школьном образовании  оценивалась столь высоко, что до 1966 г. в 9-х и 10-х классах изучалась отдельная дисциплина "Тригонометрия", на которую выделяли 2 часа в неделю. Этот курс изучался параллельно с курсом алгебры. Для этой дисциплины был подготовлен и введен отдельный учебник (С. И. Новоселов "Тригонометрия. Учебник для 9-10 классов средней школы, выдержавший десять изданий).

Учебник тригонометрии  предназначался для старшей ступени  обучения, то есть для тех школьников, кто планировал поступать в высшие учебные заведения страны.

Тригонометрическим уравнениям уделялось совсем немного внимания. В учебнике рассматривались простейшие тригонометрические уравнения, способ приведения к одной функции, способ разложения на множители и иллюстрировались возможности потери решений и появления посторонних решений при выполнении преобразований. Вместе с тем выделялся целый параграф, посвященный приближенным решениям тригонометрических уравнений.

 

1.4 Тригонометрия в школе после 1966 года

 

Начиная с середины шестидесятых годов в ходе подготовки и осуществления  реформы школьного математического образования, получившей в дальнейшем название "реформа А.Н. Колмогорова", отношение к тригонометрии стало меняться и со временем изменилось принципиально.

Прежде всего, это выразилось в изменении программных целей изучения данного раздела науки в школе. В программах основной школы семидесятых годов (например, в программе 1978 г. для десятилетней школы) о начале изучения такого специфического раздела математики, как тригонометрия, даже не упомянуто. Просто в пояснении к отдельным темам сказано, что в 8-м классе изучаются четыре темы, одна из которых "Поворот и тригонометрические функции".  

Тригонометрия утратила свое значение как отдельная школьная дисциплина и стала просто одним из многих разделов курса математики, который надлежало осваивать в силу того простого факта, что вопросы тригонометрии «традиционно» присутствовали в школьных программах и учебниках.

Обучение проводилось  по учебнику Е.С. Кочеткова, Е.С. Кочетковой. В поддержку этого учебника был издан сборник задач А.И. Худобина, Н.И. Худобина, М.Ф. Шуршалова.

Но эти учебник и  задачник переходного периода проработали в школе менее 10 лет. Вскоре им на смену пришел учебник "Алгебра и начала анализа. Учебное пособие для 9 и 10 классов средней школы" (1975) под редакцией А.Н. Колмогорова. В нем тригонометрия изучалась в конце 9-го в начале 10-го классов. Формально содержание обучения в целом было сохранено и даже расширено. Здесь вводилось радианное измерение угловых величин, тригонометрические функции и их свойства, формулы сложения, производные и исследование тригонометрических функций, тригонометрические уравнения и неравенства. В дальнейшем, после перехода к одиннадцатилетней школе, тригонометрический материал в основной ступени был значительно усилен.

 

1.5 Тригонометрия в современной школе

 

К концу XX в. в примерных  программах основного общего образования объем рекомендуемого к изучению в массовой школе тригонометрического материала заметно сократился. Например, в программе подготовленной Г.М. Кузнецовой в 1998 г. предлагается рассмотреть в основной школе:

1. в курсе алгебры  - синус, косинус, тангенс и котангенс произвольного угла, основные тригонометрические тождества, формулы приведения;

2. в курсе геометрии  - синус, косинус, тангенс и  котангенс острого угла, решение  прямоугольных треугольников, метрические  соотношения между элементами произвольного треугольника: теорема синусов и теорема косинусов.

В старшей ступени  обучения для общеобразовательных  классов тригонометрические формулы сложения и их следствия, тождественные преобразования тригонометрических выражений получили статус необязательного материала. Оставлены лишь тригонометрические функции числового аргумента, свойства и графики тригонометрических функций. А более серьезные вопросы тригонометрии отнесены к программам повышенного уровня. Но и здесь преобразование суммы тригонометрических функций в произведение и произведения в сумму отнесено к необязательному материалу.

Таким образом, после 1966 г. тригонометрический материал стал постепенно «выжиматься» не только из основной школы, но и из курса старшей ступени обучения для общеобразовательных классов.

Введение всеобщего  и обязательно десятилетнего  образования в 1966 г. и последовавший затем переход к «знаниевой» педагогике принципиально изменили ситуацию, прежде всего в старшей и основной ступенях. Возникло две проблемы.

Во-первых, это проблема обучения всех детей в течение одиннадцати лет одному и тому же содержанию. Разные способности детей не дают возможности качественно решить эту проблему, если не признать необходимость принципиально понизить уровень среднего образования. Отсюда и все споры вокруг стандартов, и учебная перегрузка детей, и отвращение многих из них к математике как к наиболее формализованному учебному предмету. А тригонометрические функции действительного аргумента в курсе математики по части формализации занимают не последнее место. Отсюда и стремление исключить этот материал из обязательного минимума содержания образования.

Одновременно с этим тригонометрический материал традиционно  популярен при проведении всевозможных конкурсов, олимпиад и при отборе математически одаренных учащихся, поскольку он чрезвычайно удобен для усложнения заданий.

Другими словами, тригонометрический материал, теряя свое общеобразовательное  значение в представлениях некоторых  специалистов в области методики обучения математике, на практике все больше обретает характер селективного инструмента. Соответственно возрастает потребность определенной части учащихся и их родителей в хорошей организации обучения этому разделу в школьный период обучения. По крайней мере, к этой части учащихся можно отнести тех, кто заинтересован в продолжении обучения в учреждениях среднего и высшего профессионального образования. А в настоящее время это не менее половины выпускников.

Таким образом, вторая проблема – подготовка в массовой школе одаренных в академическом смысле детей к поступлению и обучению в вузе.

До шестидесятых годов  такие понятия как «репетитор», «факультатив», «класс (школа) с углубленным изучением предмета» и т.п. не были известны школьным работникам и их родителям. Действительно, поскольку только половина детей переходили на обучение в старшую ступень, а в ней допускалось отчисление за неуспеваемость, то необходимости понижать уровень образования в старшей ступени даже не возникало. В так организованной школе добравшийся до выпуска школьник в основном был весьма серьезно обучен и имел широкий кругозор.

В семидесятых-восьмидесятых годах стали возникать классы, а затем и школы с углубленным изучением какого-либо предмета, в девяностых – лицеи и гимназии.

В общеобразовательных классах, и в классах с углубленным изучением того или иного предмета или цикла предметов освоение опыта «создания» фрагмента науки, безусловно, должно присутствовать. А тригонометрия для этого, как и прежде, наиболее естественный раздел школьной математики.

 

2. Тригонометрические уравнения в школьном курсе алгебры

2.1 Простейшие тригонометрические уравнения

 

Уравнением называется равенство, содержащее переменную. А уравнения, в которых неизвестные содержатся под знаком тригонометрических функций, называются тригонометрическими уравнениями.

Решением уравнения  с неизвестным х называют число хо, при подстановке которого в уравнение вместо х получается верное числовое равенство. Отличительная особенность тригонометрических уравнений – бесконечное множество корней. Эта особенность связана с характерным свойством тригонометрических функций – периодичностью. Решить уравнение – это значит найти все его решения или показать, что их нет.

Решение любого уравнения: сводится к  стандартному виду. Путем преобразований линейные уравнения сводят к виду ах = в, квадратные – к виду ax2 + вx + c =0.

Необходимость классификации  уравнений вызывается невозможностью найти общий метод их решения. Известно, что целые алгебраические уравнения со времен Декарта (1596-1650) классифицируются по степени уравнения. Чем выше степень таких уравнений, тем сложнее взаимная связь неизвестного с коэффициентами уравнения и тем труднее выразить это неизвестное через коэффициенты.

В тригонометрии предпринимались  попытки создавать свою специфическую классификацию. Пример такой классификации, содержащей восемь типов тригонометрических уравнений, приводится в пособии И.К. Андронова, А.К. Окунева «Курс тригонометрии». Классифицировать тригонометрические уравнения по степени не имеет большого смысла, так как тригонометрические уравнения допускают повышение и понижение степени за счет использования формул половинного и двойного аргумента. Очевидно, что классифицировать тригонометрические уравнения имеет смысл с опорой на методы их решения. Здесь я попытаюсь показать, с какими методами решения тригонометрических уравнений мы сталкиваемся в учебнике для 10-11 классов общеобразовательных учреждений «Алгебра и начала анализа» под редакцией А. Н. Колмогорова (2001 г.).

Решение тригонометрических уравнений выполняется в большинстве случаев (с помощью различных преобразований) путём сведения их к простейшим тригонометрическим уравнениям. Поэтому и работу с тригонометрическими уравнениями естественно начинать с простейших тригонометрических уравнений.

Уравнение f(x) = а, где а – данное число, а f(x) – одна из основных тригонометрических функций, называют простейшим тригонометрическим уравнением. В школьном курсе рассматриваются следующие простейшие тригонометрические уравнения:                      sin t = a, cos t = a, tg t = a, ctg t = a.

Рассмотрим, при каких значениях а простейшие тригонометрические уравнения разрешимы (имеют решения) и как правильно находить все решения таких уравнений.

А) Уравнение sin t = a.

Так как множество  значений функции у = sinx – отрезок [– 1; 1], то уравнение sin t = a разрешимо только в том случае, когда |а| ≤ 1. И тогда решение данного уравнения находится по формуле: t = (– 1)narcsin a + πn, где n Î Z. Соответственно, если |а| > 1, то уравнение не имеет действительных корней. Это обстоятельство следует хорошо помнить, т. к. забывая об этом, часто допускают ошибки. Например, при решении уравнения                       sin t = часто, не обращая внимания на то, что > 1, пишут ответ:                                             t = (– 1)narcsin + πn, где n Î Z, который не имеет никакого смысла, т. к. функция                    arcsin a не определена в точке а = (эта точка не принадлежит области определения функции arcsin a).

Если а = – 1; 0; 1, то рассматривают частные случаи решения данного уравнения.

При а = – 1  х =

        а = 0     х = πn, где n Î Z;

        а = 1     х = 

Б) Уравнение cos t = a.

Это уравнение имеет решения тогда и только тогда, когда |а| ≤ 1. Если это условие выполнено, то все решения уравнения cos t = a записываются в виде: t = ± arccos а + 2πn, где n Î Z. Соответственно, если |а| > 1, то уравнение не имеет действительных корней.

Если а = – 1; 0; 1, то  также рассматривают частные случаи решения данного уравнения.

При а = – 1  х =

        а  = 0     х =

        а  = 1     х = 

В) Уравнение  tg t = a.

Данное уравнение имеет решения при любом значении а Î (– µ; µ). Все решения уравнения задаются формулой t = arctg а + πn, где n Î Z. Частные случаи здесь не рассматривают.

Г) Уравнение сtg t = a.

Данное уравнение имеет  решения при любом значении а Î (– µ; µ). Все решения уравнения задаются формулой t = arсctg а + πn, где n Î Z. Частные случаи здесь также не рассматривают.

 

Ряд уравнений путём  элементарных преобразований: перенос  слагаемых из одной части уравнения  в другую, деление обеих частей уравнения на одно и тоже число, отличное от нуля, также очень легко сводятся к простейшим.

При решении простейших тригонометрических уравнений вида Аsin(вх + с) = d, Аcos(вх + с) = d, Аtg(вх + с) = d, Аctg(вх + с) = d следует обратить внимание на то, что они приводятся к виду sin(вх + с) = а,  cos(вх + с) = а, tg(вх + с) = а, ctg(вх + с) = а.

Сведение тригонометрических уравнений к простейшим тригонометрическим уравнениям выполняется различными способами. Первоначально надо рассмотреть тригонометрические уравнения, в которых под знаком тригонометрических функций стоит более сложное выражение, зависящее от х. для решения таких уравнений можно обозначить выражение, стоящее под знаком тригонометрической функции, одной буквой; решить простейшее тригонометрическое уравнение, а потом найти х, решая алгебраическое уравнение.

К таким уравнениям относятся  уравнения:

sin t = a

№ 138, 139, 142(а, в), 143(а), 144(а), 145(б, г), 146(б), 173(в) 

cos t = a

№ 136, 137, 142(б, г), 143(б), 144(в), 145(а), 146(г), 172(б)

tg t = a

№ 140(а, в, г), 141(а, в), 143(г), 144(б), 145(в), 146(в), 173(б) 

ctg t = a

№ 140(б), 141(б, г), 143(б), 144(г)

Информация о работе Тригонометрические уравнения в школьном курсе алгебры