Шпаргалка по "Информатике"

Автор работы: Пользователь скрыл имя, 14 Марта 2014 в 14:54, шпаргалка

Краткое описание

1.понятие информации
2.синтаксический, семантический и прагматический аспекты информации
3.Свойства информации

Прикрепленные файлы: 1 файл

информационные технологии 1.docx

— 173.59 Кб (Скачать документ)

1240 х 1024 и др. Изображение на экране дисплея создается путем

избирательной засветки электронным путем определенных видеопикселей

экрана. Чтобы изображение могло восприниматься глазом, его необходимо

составить из сотен или тысяч видеопикселей, каждый из которых должен быть

подсвечен.

31. Цвет и методы его описания

ля описания цветовых оттенков, которые могут быть воспроизведены на экране компьютера и на принтере, разработаны специальные средства — цветовые модели (или системы цветов).Чтобы успешно применять их в компьютерной графике, необходимо:

• понимать особенности каждой цветовой модели

• уметь определять тот или иной цвет , используя различные цветовые модели

• понимать, как различные графические программы решают вопрос кодирования цвета

• понимать, почему цветовые оттенки, отображаемые на мониторе, достаточно сложно точно воспроизвести при печати.

Мы видим предметы потому, что они излучают или отражают свет.

Свет — электромагнитное излучение.

Цвет характеризует действие излучения на глаз человека. Таким образом, лучи света, попадая на сетчатку глаза, производят ощущение цвета.

Излучаемый свет — это свет, выходящий из источника, например, Солнца, лампочки или экрана монитора.

Отражённый свет — это свет, «отскочивший » от поверхности объекта. Именно его мы видим, когда смотрим на какой-либо предмет, не являющийся источником света.

Излучаемый свет, идущий непосредственно от источника к глазу, сохраняет в себе все цвета, из которых он создан. Но этот свет может измениться при отражении от объекта (рис. 1).

Подобно Солнцу и другим источникам освещения, монитор излучает свет. Бумага, на которой печатается изображение, отражает свет. Так как цвет может получиться в процессе излучения и в процессе отражения, то существуют два противоположных метода его описания: системы аддитивных и субтрактивны х цветов.

Система аддитивных цветов

Если с близкого расстояния (а ещё лучше с помощью лупы) посмотреть на экран работающего монитора или телевизора, то нетрудно увидеть множество мельчайших точек красного (Red),зелёного (Green) и синего (Blue) цветов. Дело в том, что на поверхности экрана расположены тысячи фосфоресцирующих цветовых точек, которые бомбардируются электронами с большой скоростью. Цветовые точки излучают свет под воздействием электронного луча. Так как размеры этих точек очень малы (около 0,3 мм в диаметре), соседние разноцветные точки сливаются, формируя все другие цвета и оттенки, например:

красный + зеленый = желтый,

красный + синий = пурпурный,

зеленый + синий = голубой,

красный + зеленый + синий = белый.

Компьютер может точно управлять количеством света, излучаемого через каждую точку экрана. Поэтому, изменяя интенсивность свечения цветных точек, можно создать большое многообразие оттенков.

Таким образом, аддитивный (add — присоединять) цвет получается при объединении (суммировании) лучей трех основных цветов — красного, зеленого и синего. Если интенсивность каждого из них достигает 100%, то получается белый цвет. Отсутствие всех трех цветов дает черный цвет. Систему аддитивных цветов, используемую в компьютерных мониторах, принято обозначать аббревиатурой RGB .

В большинстве программ для создания и редактирования изображений пользователь имеет возможность сформировать свой собственный цвет (в дополнение к предлагаемым палитрам), используя красную , зеленую и синюю компоненты. Как правило, графические программы позволяют комбинировать требуемый цвет из 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего. Как нетрудно подсчитать, 256 х 256 х 256 = 16,7 миллионов цветов. Вид диалогового окна для задания произвольного цветового оттенка в разных программах может быть различным (рис. 2,3,4).

Таким образом, пользователь может выбрать готовый цвет из встроенной палитры или создать свой собственный оттенок, указав в полях ввода значения яркостей R , G и В для красной, зеленой и синей цветовых составляющих в диапазоне от 0 до 255 (рис. 2,3,4).

Далее вновь созданный цвет может быть использован для рисования и закрашивания фрагментов изображения.

В программе CorelDRAW цветовая модель RGB дополнительно представляется в виде трёхмерной системы координат (рис. 2), в которой нулевая точка соответствует чёрному цвету. Оси координат соответствуют основным цветам, а каждая из трёх координат в диапазоне от 0 до 255 отражает «вклад» того или иного основного цвета в результирующий оттенок. Перемещение указателей («ползунков») по осям системы координат влияет на изменение значений в полях ввода, и наоборот. На диагонали, соединяющей начало координат и точку, в которой все составляющие имеют максимальный уровень яркости, располагаются оттенки серого цвета — от чёрного до белого (оттенки серого цвета получаются при равных значениях уровней яркости всех трёх составляющих).

Так как бумага не излучает свет, цветовая модель RGB не может быть использована для создания изображения на печатаемой странице.

Система субтрактивны х цветов

В процессе печати свет отражается от листа бумаги. Поэтому для печати графических изображений используется система цветов, работающая с отраженным светом — система субтрактивных цветов (subtract — вычитать).

Белый цвет состоит из всех цветов радуги. Если пропустить луч света через простую призму, он разложится в цветной спектр. Красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый цвета образуют видимый спектр света. Белая бумага при освещении отражает все цвета, окрашенная же бумага поглощает часть цветов, а остальные — отражает. Например, листок красной бумаги, освещённый белым светом, выглядит красным именно потому, что такая бумага поглощает все цвета, кроме красного. Та же красная бумага, освещённая синим цветом, будет выглядеть чёрной, так как синий цвет она поглощает.

В системе субтрактивных цветов основными являются голубой (Cyan), пурпурный (Magenta) и жёлтый (Yellow). Каждый из них поглощает (вычитает) определённые цвета из белого света, падающего на печатаемую страницу. Вот как три основных цвета могут быть использованы для получения чёрного, красного, зелёного и синего цветов:

голубой + пурпурный + жёлтый = чёрный,

голубой + пурпурный = синий,

жёлтый + пурпурный = красный,

жёлтый + голубой = зелёный.

Смешивая основные цвета в разных пропорциях на белой бумаге, можно создать большое многообразие оттенков.

Белый цвет получается при отсутствии всех трёх основных цветов. Высокое процентное содержание голубого , пурпурного и жёлтого образует чёрный цвет. Точнее, чёрный цвет должен получиться теоретически, в действительности же из-за некоторых особенностей типографских красок смесь всех трёх основных цветов даёт грязно-коричневый тон, поэтому при печати изображения добавляется ещё чёрная краска (Black).

Систему субтрактивн ы х цветов обозначают аббревиатурой CMYK (чтобы не возникла путаница с Blue, для обозначения Black используется символ К).

Процесс четырёхцветной печати можно разделить на два этапа.

1. Создание на базе исходного  рисунка четырёх составляющих  изображений голубого, пурпурного, жёлтого и чёрного цветов.

2. Печать каждого из этих изображений  одного за другим на одном  и том же листе бумаги.

Разделение цветного рисунка на четыре компоненты выполняет специальная программа цветоделения. Если бы принтеры использовали систему CMY (без добавления чёрной краски), преобразование изображения из системы RGB в систему CMY было бы очень простым: значения цветов в системе CMY — это просто инвертированные значения системы RGB. На схеме «цветовой круг» (рис. 5) показана взаимосвязь основных цветов моделей RGB и CMY. Смесь красного и зелёного даёт жёлтый, жёлтого и голубого — зелёный, красного и синего — пурпурный и т. д.

Таким образом, цвет каждого треугольника на рис. 5 определяется как сумма цветов смежных к нему треугольников. Но из-за необходимости добавлять чёрную краску, процесс преобразования становится значительно сложнее. Если цвет точки определялся смесью цветов RGB , то в новой системе он может определяться смесью значений CMY плюс ещё включать некоторое количество чёрного цвета. Для преобразования данных системы RGB в систему CMYK программа цветоделения применяет ряд математических операций. Если пиксель в системе RGB имел чистый красный цвет (100% R, 0% G, 0% В), то в системе CMYK он должен иметь равные значения пурпурного и жёлтого (0 % С, 100% М, 100% Y, 0% К).

 

32. Графический редактор.

Графический редактор – это программа, предназначенная для построения на экране дисплея графических изображений (рисунков, чертежей и т.д.). 
Графический редактор представляет возможности рисования линий, кривых, раскраски изображения, создание надписей различными шрифтами. 
Большинство редакторов позволяет обрабатывать изображения, полученные с помощью сканеров. По своим возможностям графические редакторы можно разделить на три группы: простейшие, пользовательские и профессиональные. 
Простейшие – растровые (точечные) для создания несложных графических изображений (Paintbrush). Такие редакторы встроены как инструмент в текстовые редакторы, например, Word и позволяют создавать простые графические изображения в их среде. 
Пользовательские – это редакторы с функциями создания публикаций, снабженные инструментами для редактирования графики и трехмерного моделирования (Corel DRAW). 
Профессиональные – это редакторы, которыми пользуются дизайнеры, художники-иллюстраторы, фотографы, мультипликаторы. Одним из таких редакторов является Adobe Photoshop. Он позволяет воплотить любой художественно - живописный замысел, создавать и трансформировать реалистические изображения.

33. Основные форматы графических  файлов

Форматы файлов – основа работы с цифровыми фотографиями. FotoTips.ru расскажет вам о всех основных форматах графических файлов.

RAW.

Формат файлов содержащий необработанную информацию, поступающую напрямую с матрицы фотокамеры. Эти файлы не обрабатываются процессором камеры (в отличие от JPG) и содержат оригинальную информацию о съемке. RAW может быть сжат без потери качества.

Преимущества RAW очевидны – в отличие от JPG, который был обработан в камере и уже сохранен с сжатием данных – RAW дает широчайшие возможности по обработке фотографии и сохраняет максимальное качество.

Заметка. Разные производители фототехники используют разные алгоритмы для создания RAW в своих камерах. Каждый производитель придумывает собственное разрешение для своего RAW-файла – NEF – Nikon, CR2 – Canon…

JPEG (он же JPG).

Это самый распространенный формат графических файлов.

Свою популярность JPG заслужил гибкой возможностью сжатия данных. При необходимости изображение можно сохранить с максимальным качеством. Либо сжать его до минимального размера файла для передачи по сети.

В JPG применяется алгоритм сжатия с потерей качества. Что это нам дает? Явный минус такой системы – потеря качества изображения при каждом сохранении файла. С другой сжатие изображения в 10 раз упрощает передачу данных.

На практике, сохранение фотографии с минимальной степенью сжатия не дает видимого ухудшение качества изображения. Именно поэтому JPG – самый распространенный и популярный формат хранения графических файлов.

TIFF.

Формат TIFF очень популярен для хранения изображений. Он позволяет сохранять фотографии в различных цветовых пространствах (RBG, CMYK, YCbCr, CIE Lab и пр.) и с большой глубиной цвета (8, 16, 32 и 64 бит). TIFF широко поддерживается графическими приложениями и используется в полиграфии.

В отличии от JPG, изображение в TIFF не будет терять в качестве после каждого сохранения файла. Но ,к сожалению, именно из-за этого TIFF файлы весят в разы больше JPG.

Право на формат TIFF в данный момент принадлежит компании Adobe. Photoshop может сохранять TIFF без объединения слоев.

PSD.

Формат PSD используется в программе Photoshop. PSD позволяет сохранять растовое изображение со многими слоями, любой глубиной цвета и в любом цветовом пространстве.

Чаще всего формат используется для сохранения промежуточных или итоговых результатов сложной обработки с возможностью изменения отдельных элементов.

Так же PSD поддерживает сжатие без потери качества. Но обилие информации, которое может содержать PSD файл, сильно увеличивает его вес.

BMP.

Формат BMP один из первых графических форматов. Его распознает любая программа работающая с графикой, поддержка формата интегрирована в операционные системы Windows и OS/2.

BMP хранит данные с глубиной  цвета до 48 бит и максимальным  размером 65535×65535 пикселей. 
На данный момент формат BMP практически не используеться ни в интернете (JPG весит в разы меньше), ни в полиграфии (TIFF справляеться с этой задачей лучше).

GIF.

Формат GIF был создан на заре интернета для обмена изображениями. Он может хратить сжатые без потери данных изображения в формате до 256 цветом. Формат GIF идеально подходит для чертежей и графиков, а так же поддерживает прозрачность и анимацию. 
Так же GIF поддерживает сжатие без потери качества.

PNG.

Формат PNG создан как для улучшения, так и для замены формата GIF графическим форматом, не требующим лицензии для использования. В отличии от GIF, у PNG есть поддержка альфа-канала и возможность хранить неограниченное количество цветов.

PNG сжимает данные без потерь, что делает его очень удобным  для хранения промежуточных версий  обработки изображений.

JPEG 2000 (или jp2).

Новый графический формат, созданный для замены JPEG. При одинаковом качестве размер файла в формате JPEG 2000 на 30% меньше, чем JPG.

При сильном сжатии JPEG 2000 не разбивает изображение на квадраты, характерные формату JPEG.

К сожалению, на данный момен этот формат мало распростанён и поддерживается только браузерами Safari и Mozilla/Firerox (через Quicktime).

34. Понятие мультимедиа. Методы  представления мультимедийных данных

Мультимедиа — это взаимодействие визуальных и аудиоэффектов под управлением интерактивного программного обеспечения с использованием современных технических и программных средств, они объединяют текст, звук, графику, фото, видео в одном цифровом представлении. 
Основными способами представления мультимедийной информации на сегодняшний день являются: 

  •  
    Аудио

  •  
    Видео

  •  
    Текст

  •  
    Анимация

  •  
    Изображение

  •  
    Интерактивность

 
Мультимедиа может быть грубо классифицировано как линейноеи нелинейное. 
Аналогом линейного способа представления может являться кино.Человек, просматривающий данный документ никаким образом не может повлиять на его вывод. 
Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных. Участие человека в данном процессе также называется «интерактивностью». Такой способ взаимодействия человека икомпьютера наиболее полным образом представлен в категорияхкомпьютерных игр. Нелинейный способ представления мультимедийных данных иногда называется «гипермедиа». 
В качестве примера линейного и нелинейного способа представления информации, можно рассматривать такую ситуацию, как проведение презентации. Если презентация была записана на пленку и показывается аудитории, то при этом способе донесения информации просматривающие данную презентацию не имеют возможности влиять на докладчика. В случае же живой презентации, аудитория имеет возможность задавать докладчику вопросы и взаимодействовать с ним прочим образом, что позволяет докладчику отходить от темы презентации, например поясняя некоторые термины или более подробно освещая спорные части доклада. Таким образом, живая презентация может быть представлена, как нелинейный(интерактивный) способ подачи информации.

Информация о работе Шпаргалка по "Информатике"