Строение (молекулярное), свойства, классификация термореактивных пластмасс

Автор работы: Пользователь скрыл имя, 03 Мая 2014 в 19:14, реферат

Краткое описание

В производстве пластмасс широко используют фенолоформальдегидные, кремнийорганические, эпоксидные смолы, непредельные полиэфиры и их различные модификации. Более высокой адгезией к наполнителю обладают эпоксидные связующие, которые позволяют получать армированные пластики с высокой механической прочностью. В зависимости от формы частиц наполнителя термореактивные пластмассы можно подразделить на следующие группы: порошковые, волокнистые и слоистые.

Прикрепленные файлы: 1 файл

КР. Материаловедение (пластмассы) №2636.docx

— 172.52 Кб (Скачать документ)

Поликарбонат.

Поликарбонат - термопластичный полимер на основе дифенилолпропана и фостена, выпускаемый под названием дифлон. Поликарбонат характеризуется низкой водопоглощаемостьюи газонепроницаемостью, хорошими диэлектрическими свойствами, высокой жёсткостью, теплостойкостью и химической стойкостью, прозрачен, хорошо окрашивается. Стоек к световому старению и действию окислителей даже при нагреве до 120 С, допускается при работе изделий в интервале от -100 до 135 С.Это один из наиболее ударопрочных термопластов, что позволяет использовать его в качестве конструкционного материала, заменяющего металлы. В автомобилестроении из поликарбоната изготавливают шестерни, подшипники, корпуса, крышки, клапаны.

Полиформальдегиды (полиацетали).

Полиформальдегиды (ПФ) – это продукт полимеризации формальдегида и триоксана с диоксоланом (СТД). Они сочетают высокий модуль упругости при растяжении и изгибе с достаточно большой ударной вязкостью. По показателям долговременной прочности при растяжении и изгибе и по усталостной прочности эти материалы превосходят все другие термопласты, включая полиамиды, поликарбонаты. Теплостойкость при изгибе при высоких нагрузках у образцов из ПФ выше, чем у других термопластов, включая ПА-610, а коэффициент трения по стали близок к этому показателю для ПА. Антифрикционные марки ПФ имеют коэффициент трения 0,15-0,20.Полиформальдегиды значительно превосходят ПА по водостойкости: при эксплуатации в водной среде механические свойства материалов изменяются незначительно. Эти материалы удачно сочетают хорошие электротехнические свойства с механической прочностью и водостойкостью. При нормальных и пониженных температурах они устойчивы ко всем без исключения органическим растворителям, слабым кислотами основаниям. Полиформальдегиды имеют хорошую сырьевую базу и в перспективе являются интересным конструкционным материалом. В настоящее время стоимость ПФ высока, что ограничивает их применение. К недостаткам этих материалов следует отнести невысокую стойкость к воздействию УФ-лучей и светостойкость. Основной метод переработки - литьё под давлением.

В автомобильной промышленности применяются полиформальдегиды марок ПФ-Л-1, ПФ-Л-2, ПФ-Л-3.Из них изготавливают корпуса жиклёра омывателя, поводок пружины замка капота, кольца распорные, втулки, кулачки, поршни, толкатели, корпуса клапанов, детали карбюратора (муфты и др.), топливных насосов, трубопроводов, ручки дверей, переключатели.

б) Термореактивные пластмассы (реактопласты).

Фенопласты.

Фенопласты (фенольные пластики) - пластмассы основе фенолоформальдегидных смол. В зависимости от наполнителя фенопласты подразделяются на порошкообразные, волокнистые, слоистые материалы. Фенопласты, содержащие порошкообразные наполнители (древесную муку, минеральные наполнители.), наз. – пресс-порошками. Фенопласты, содержащие наполнитель в виде хлопчатобумажных волокон, наз. – волокнитами, а в виде стеклянных волокон – стекловолокнитами. Если фенопласты имеют в качестве наполнителя ткани, то – текстолиты, если бумагу - гетинаксами. Отличительной особенностью фенопластов является хорошие диэлектрические показатели, высокие механические свойства, низкое водопоглощение, хорошие химические свойства. В автомобилестроении для производства деталей применяются следующие фенопласты: Пресс-порошки типа О – общего назначения – рекомендованы для ненагруженных и неармированных деталей общего назначения, к механическим свойствам которых не предъявляются высокие требования. Из пресс-порошка типа О изготавливают держатели фланцев, изолирующие втулки, шайбы, ручки. Пресс-порошки типа Вх – для изготовления деталей электротехнического назначения, работающих в условиях повышенной влажности и высоких температур. Волокниты типа У- Особенность изделий из волокнит — высокая ударная прочность, кроме того, они стойки к действию воды, минерального масла, бензина, слабых кислот и растворителей; разрушаются растворами щелочей, сильных кислот, хлора, применяются для изготовления деталей технического назначения, к которым предъявляются требования повышенной прочности на ударный и статический изгиб, кручение, например кожух радиатора отопителя, крышки аккумуляторов, втулок, шкивов, маховиков. Стекловолокнит АГ-4В – отличаются высокой прочностью, тепло- и морозостойкостью, хорошей ударной вязкостью и электротехническими свойствами. Из стекловолокнита изготавливают кожух вентиляторов отопителя, крышку аккумуляторной батареи, корпус вентилятора отопителя задка, стакан фильтра. Текстолиты - материалы с хорошими механическими, электротехническими и теплофизическими свойствами. Применение этого материала ограничено необходимостью получения изделия из отпрессованной заготовки механической обработкой. Из текстолита изготавливают шестерни распределительного вала, крыльчатка водяного насоса, шайбы уплотнительные и изолирующие, кнопки клапанов топливного насоса, изолирующие прокладки, а так же некоторые детали антифрикционного назначения. Из текстолит-крошки изготовляют детали с хорошими механическими и антифрикционными свойствами (сальники, ролики, шестерни, втулки, вкладыши подшипников и др.).

Асбоволокниты – обладают хорошими фрикционными (тормозными) свойствами и теплостойкостью. Дозирующие стекловолокниты - по сравнению с материалом АГ-4В имеют улучшенные технологические свойства, и более однородны по механическим свойствам. Из дозирующих стекловолокнитов прессуют детали электроизоляционного назначения – кожухи вентиляторов, крышки аккумуляторных батарей.

Перспективы применения пластмасс в конструкции автомобиля.

Применение пластиков в конструкции автомобиля позволяет снизить массу, улучшить эксплуатационные характеристики автомобиля, повысить его травмобезопасность и комфортабельность. В среднем в одном легковом автомобиле применяется 45кг пластмасс, в перспективе предусматривается увеличение этого количества до 80-110кг. В основном внедрение пластмасс в автомобиль происходит при разработке новых конструкций базовых моделей. Основным направлением расширения применения пластмасс в конструкции автомобиля является внедрение крупногабаритных наружных деталей кузова из композиционных полимерных материалов, обеспечивающих снижение массы и повышение долговечности за счёт коррозионной стойкости. Разработка высокопрочных композиционных материалов с полимерной матрицей и стеклянными, углеродными и другими волокнами позволила перейти к использованию их в нагруженных силовых деталях, таких как карданные валы, рессоры, обода колёс.

 

  1. Область применения и назначение изделий из термореактивных пластмасс, примеры марок.

 

Дальнейшее развитие производства термопластов направлено на создание материалов из тех же полимеров, но с новыми сочетаниями свойств, применением эластификаторов, порошковых и коротковолокнистых наполнителей.

Потребление пластических масс в строительстве непрерывно возрастает. При увеличении мирового производства пластмасс в 1960-70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества пластических материалов перед др. строительными материалами - лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко пластмассы (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ, герметизации, гидро- и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования. Их применяют и в виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч. светопрозрачных), оконных переплётов, дверей, пневматических строительных конструкций, домиков для туристов, летних павильонов и др.

Пластмассы занимают одно из ведущих мест среди конструкционных материалов машиностроения. Потребление их в этой отрасли становится соизмеримым (в единицах объёма) с потреблением стали. Целесообразность использования пластмасс в машиностроении определяется прежде всего возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин - уменьшается масса, повышаются долговечность, надёжность и др. Из пластмассизготовляют зубчатые и червячные колёса, шкивы, подшипники, ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент технологической оснастки и др.

Основные достоинства пластических масс., обусловливающие их широкое применение в авиастроении, - лёгкость, возможность изменять технические свойства в большом диапазоне. За период 1940-70 число авиационных деталей из пластмасс увеличилось от 25 до 10 000. Наибольший прогресс в использовании полимеров достигнут при создании лёгких самолётов и вертолётов. Тенденция ко всё более широкому их применению характерна также для производства ракет и космических аппаратов, в которых масса деталей из пластмасс может составлять 
50% от общей массы аппарата. С использованием реактопластов изготовляют реактивные двигатели, силовые агрегаты самолётов (оперение, крылья, фюзеляж и др.), корпуса ракет, колёса, стойки шасси, несущие винты вертолётов, элементы тепловой защиты, подвесные топливные баки и др. Термопласты применяют в производстве элементов остекления, антенных обтекателей, при декоративной отделке интерьеров самолётов и др., пено- и сотопласты - как заполнители высоконагруженных трёхслойных конструкций.

Области применения пластмасс в судостроении очень разнообразны, а перспективы использования практически неограничены. Их применяют для изготовления корпусов судов и корпусных конструкций (главным образом стеклопластики), в производстве деталей судовых механизмов, приборов, для отделки помещений, их тепло-, звуко- и гидроизоляции.

В автомобилестроении особенно большую перспективу имеет применение Пластмассы для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на долю кузова приходится около половины массы автомобиля и ~ 40% его стоимости. Кузова из пластмасс более надёжны и долговечны, чем металлические, а их ремонт дешевле и проще. Однако пластмассы не получили ещё большого распространения в производстве крупногабаритных деталей автомобиля, главным образом из-за недостаточной жёсткости и сравнительно невысокой атмосферостойкости. Наиболее широко их применяют для внутренней отделки салона автомобиля. Из них изготовляют также детали двигателя, трансмиссии, шасси. Огромное значение, которое играют в электротехнике, определяется тем, что они являются основой или обязательным компонентом всех элементов изоляции электрических машин, аппаратов и кабельных изделий. 
Пластмассы часто применяют и для защиты изоляции от механических воздействий и агрессивных сред, для изготовления конструкционных материалов и др.

Тенденция ко всё более широкому применениюпластмасс. (особенно плёночных материалов) характерна для всех стран с развитым сельским хозяйством. Их используют при строительстве культивационных сооружений, для мульчирования почвы, дражирования семян, упаковки и хранения сельском хозяйстве продукции и т.д. В мелиорации и сельском хозяйстве водоснабжении полимерные плёнки служат экранами, предотвращающими потерю воды на фильтрацию из оросительных каналов и водоёмов; из пластмасс изготовляют трубы различного назначения, используют их в строительстве водохозяйственных сооружений и др.

В медицинской промышленности применение Пластмасс позволяет осуществлять серийный выпуск инструментов, специальной посуды и различных видов упаковки для лекарств. В хирургии используют пластмассовые клапаны сердца, протезы конечностей, ортопедические вкладки, туторы, стоматологические протезы, хрусталики глаза и др.

 

  1. Технологические процессы изготовления изделий из пластмасс.

 

    1. Подготовка материала.

Понятие подготовки сырья включает в себя вес технологические операции, необходимые для того, чтобы из полимерного сырья получить способный к переработке материал. Изготовители полимерного сырья, предназначенного для переработки в готовое изделие, как правило, поставляют свою продукцию в виде гранулята, легко поддающегося переработке. В таком случае, сырье уже подготовлено на предприятии-производителе. Из-за большого количества рецептур, а также многообразия добавок, подготовку полимера может взять на себя переработчик.

Смешение - процесс механического распределения различных веществ (гранулята с дробленкой, красителей и добавок) за счет взаимного перемещения частиц, осуществляемого до получения заданного соотношения компонентов в любой точке перемешиваемого объема. В зависимости от свойств материалов и требуемого размера зерен используют различные смесительные установки.

Измельчение - это процесс уменьшения размеров частиц твердых тел, преимущественно, за счет механического воздействия. В зависимости от типа вещества при измельчении могут быть использованы различные технологические установки: валковая дробилка, молотковая дробилка, бегуны, дисковая ударно-отражательная мельница, ножевая дробилка, стержневая мельница или вальковая мельница.

1.1.1. Перед переработкой термопластов следует проводить их подсушку, с целью уменьшения   гигроскопической   или   конденсированной   влаги.   Сушка гигроскопических материалов (сополимеров стирола, полиамидов, поликарбонатов, ПММА) строго обязательна. Подогрев негигроскопичных термопластов способствует интенсификации   литья   под   давлением.   Допустимая   остаточная   влажность термопластов и их подсушка указана в Приложении №4.

1.1.2. Гранулированные и измельченные термопласты рекомендуется сушить в любых полочных сушильных шкафах на перфорированных полках слоями в 20-30 мм.(время сушки при применении вакуума сокращается в 2-3 раза) или в сушилках с предварительным нагревом воздуха и с последующим его продувом через гранулы. Полки сушилок должны быть короче длины шкафа для обеспечения свободной конвекции горячего воздуха.

1.1.3. Подсушенный термопласт должен храниться в герметично закрывающейся таре.

1.1.4 . В бункер литьевой машины следует загружать термопласт сухим и подогретым.   Для   термопластов   с   низкой   теплопроводностью   (поликарбонат, полиамид, полипропилен), желательно, использовать предварительный подогрев в обогреваемом бункере литьевой машины.

1.2. Литьё под давлением.

1.2.1 .ОБОРУДОВАНИЕ

Литьевые машины (термопластавтоматы - ТПА) предназначены для формования изделий из термопластов методом литья под давлением. Литьевая машина состоит из трех наиболее важных узлов: узел смыкания, узел пластикации и станина машины с системой привода и системой управления.

Задачи, выполняемые узлом пластикации, состоят в следующем: загрузка, подача, пластикация, дозировка и впрыск (инжекция) термопласта.

Задачи, выполняемые узлом смыкания: контакт с мундштуком, размыкание и смыкание литьевой формы, создание усилия, необходимого для удержания литьевой формы в закрытом состоянии и извлечение изделия из литьевой формы.

Станина служит для размещения на ней отдельных элементов конструкции литьевой машины и их надежного крепления.

1.2.2. ОСНАСТКА.

При формовании из термопластов необходимо использовать стационарные литьевые формы. Литьевая форма в основном состоит из неподвижной и подвижной частей, литниковой втулки, литниковой системы, выталкивающего устройства и охлаждающей системы. Конструкция литьевых форм должна отвечать следующим технологическим требованиям:

-одновременное заполнение  гнёзд литьевой формы;

-Равномерное давление  впрыска (инжекция) и усилие подпрессовки для многогнёздных форм, чем достигается однородная плотность и размерная точность изделий;

-изменение размеров каждого  вводного канала в литьевых  формах для изготовления нескольких  различных по величине деталей  и в литьевых формах с последовательным  расположением гнёзд одинакового  размера для обеспечения одновременной  отливки всех деталей, поскольку  длина пути расплава к отдельным  деталям различна;

Информация о работе Строение (молекулярное), свойства, классификация термореактивных пластмасс