Строение (молекулярное), свойства, классификация термореактивных пластмасс

Автор работы: Пользователь скрыл имя, 03 Мая 2014 в 19:14, реферат

Краткое описание

В производстве пластмасс широко используют фенолоформальдегидные, кремнийорганические, эпоксидные смолы, непредельные полиэфиры и их различные модификации. Более высокой адгезией к наполнителю обладают эпоксидные связующие, которые позволяют получать армированные пластики с высокой механической прочностью. В зависимости от формы частиц наполнителя термореактивные пластмассы можно подразделить на следующие группы: порошковые, волокнистые и слоистые.

Прикрепленные файлы: 1 файл

КР. Материаловедение (пластмассы) №2636.docx

— 172.52 Кб (Скачать документ)
  1. Строение (молекулярное), свойства, классификация термореактивных пластмасс.

 

В качестве связующих веществ применяют термореактивные смолы, в которые иногда вводятся пластификаторы, отвердители, ускорители или замедлители» растворители. Основными требованиями к связующим веществам являются высокая клеящая способность (адгезия), высокие теплостойкость, химическая стойкость и электроизоляционные свойства, простота технологической переработки, небольшая усадка и отсутствие токсичности (вредности). Смола склеивает как отдельные слои наполнителя, так и элементарные волокна и воспринимает нагрузку одновременно с ними, поэтому связующее вещество после отверждения должно обладать достаточной прочностью на отрыв при расслаивании материала. Для обеспечения высокой адгезии связующее должно быть полярным. Необходимо, чтобы температурные коэффициенты линейного расширения связующего и наполнителя были близки по величине.

В производстве пластмасс широко используют фенолоформальдегидные, кремнийорганические, эпоксидные смолы, непредельные полиэфиры и их различные модификации. Более высокой адгезией к наполнителю обладают эпоксидные связующие, которые позволяют получать армированные пластики с высокой механической прочностью. Теплостойкость стеклопластиков на кремнийорганическом связующем при длительном нагреве составляет 260—370°С, на фенолоформальдегидном до 260 °С, на эпоксидном до 200 °С, на непредельном полиэфирном до 200 °С и на полиимид-ном связующем 280—350°С Важным свойством непредельных полиэфиров и эпоксидных смол является их способность к отверждению не только при повышенной, но и при нормальной температуре без выделения побочных продуктов с минимальной усадкой. Из пластмасс на их основе можно получать крупногабаритные изделия.

В зависимости от формы частиц наполнителя термореактивные пластмассы можно подразделить на следующие группы: порошковые, волокнистые и слоистые.

Пластмассы с порошковыми наполнителями. В качестве наполнителей применяют органические (древесная мука) и минеральные (молотый кварц, асбест, слюда, графит и др.) порошки.

Свойства порошковых пластмасс характеризуются изотропностью, невысокой механической прочностью и низкой ударной вязкостью, удовлетворительными электроизоляционными показателями. Их применяют для несиловых конструкционных и электроизоляционных деталей.

Минеральные наполнители придают пластмассе водостойкость, химическую стойкость, повышенные электроизоляционные свойства, устойчивость к тропическому климату. Композиции на основе эпоксидных смол широко применяют в машиностроении для изготовления различной инструментальной оснастки, вытяжных и формовочных штампов, корпусов станочных, сборочных и контрольных приспособлений, литейных моделей, копиров и другой оснастки. Их применяют для восстановления изношенных деталей и отливок.

Пластмассы с волокнистыми наполнителями. К этой группе пластмасс относятся волокниты, асбоволокниты, стекловолокниты.

Волокниты представляют собой композиции из волокнистого наполнителя в виде очесов хлопка, пропитанного фенолоформальдегидным связующим. По сравнению с пресс-порошками они имеют несколько повышенную ударную вязкость. Применяют для деталей общего технического назначения, работающим на изгиб и кручение (рукоятки, стойки, фланцы, направляющие втулки, шкивы, маховики и т.д.).

Асбоволокниты содержат наполнителем асбест. Связующим служит в основном фенолоформальдегидная смола. Преимуществом асбоволокнитов является повышенная теплостойкость (свыше 200 °С), устойчивость к кислым средам и высокие фрикционные свойства, Асбоволокниты используют в качестве материала тормозных устройств; из материала фаолита (разновидность асбоволокнитов) получают кислотоупорные аппараты, ванны, трубы.

Стекловолокниты — это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качестве наполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Для практических целей используют волокно диаметром 5—20 мкм с 0Р = 600/3800 МПа и е = 2/3,5 %.

Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатного состава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, с металлической арматурой. Материал получается с изотропными прочностными характеристиками, намного более высокими, чем у пресс-порошков и даже волокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ. (дозирующиеся стекловолокниты), которые применяют для изготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качестве связующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно примерять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпуса приборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательно склеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика. Стекловолокниты могут работать при температурах от —60 до 200 °С, а также в тропических условиях, выдерживать большие инерционные перегрузки. При старении в течение двух лет коэффициент старения Кс =0,5/0,7. Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой точности, с арматурой и резьбой. Слоистые пластмассы, Слоистые пластмассы являются силовыми конструкционными и поделочными материалами, Листовые наполнители, уложенные слоями, придают пластике анизотропность. Материалы выпускают в виде листов, плит, труб, заготовок, из которых механической обработкой получают различные детали.

Гетинакс получается на основе модифицированных фенольных, анилиноформальдегидных и карбамидных смол и различных сортов бумаги. По назначению гетинакс подразделяют на электротехнический и декоративный. Гетинакс можно применять при температуре 120—140 °С. Он устойчив к действию химикатов, растворителей, пищевых продуктов: используется для внутренней облицовки пассажирских кабин самолетов, железнодорожных вагонов, кают судов, в строительстве.

Текстолит (связующее — термореактивные смолы, наполнитель — хлопчатобумажные ткани) среди слоистых пластиков обладает наибольшей способностью поглощать вибрационные нагрузки, хорошо сопротивляться раскалыванию. В зависимости от назначения текстолиты делят на конструкционные (ПТК, ПТ,ПТМ), электротехнические, графитированные, гибкие прокладочные.

Текстолит как конструкционный материал применяют для зубчатых колес; шестеренные передачи работают бесшумно при частоте вращения до 30 000 мин"1. Текстолитовые вкладыши подшипников служат в 10—15 раз дольше бронзовых. Однако рабочая температура текстолитовых подшипников невысока (80—90 °С). Они применяются в прокатных станах, центробежных насосах, турбинах и др.

Древеснослоистые пластики (ДСП) состоят из тонких листов древесного шпона, пропитанных феноло и крезольно-формальдегидными смолами и спрессованных в виде листов и плит. Древеснослоистые пластики имеют высокие физико-механические свойства, низкий коэффициент трения и с успехом заменяют текстолит, а также цветные металлы и сплавы. Шестерни из ДСП долговечны, при работе их в паре с металлическими, заметно снижается шум. Подшипники из ДСП не образуют задиров на трущейся поверхности металлического вала. Недостатком ДСП является чувствительность к влаге. Из ДСП изготовляют шкивы, втулки, ползуны лесопильных рам, корпусы насосов, подшипники, детали автомобилей и железнодорожных вагонов, лодок, детали текстильных машин, матрицы для вытяжки и штамповки.

Асботекстолит содержит 38—43 % связующего, остальное асбестовая ткань. Асботекстолит является конструкционным, фрикционным и термоизоляционным материалом. Наиболее высокой теплостойкостью обладает материал на кремнийорганическом связующем (300 °С), а механическая прочность выше у фенольных асбопластиков. Из асботекстолита делают лопатки ротационных бензонасосов, фрикционные диски, тормозные колодки (без смазывания коэффициент трения f= 0,3/0,38, со смазыванием маслом- = 0,05—0,07).

Асботекстолит выдерживает кратковременно высокие температуры и поэтому применяется в качестве теплозащитного и теплоизоляционного материала (в течение 1—4 ч выдерживает температуру 250—500 °С и кратковременно 3000 °С и выше).

В стеклотекстолитах применяют в качестве наполнителя стеклянные ткани. На основе нетканых ориентированных материалов (нити в которых не перегибаются) получают стеклотекстолиты (типа ВПР-10), имеющие те же показатели, что и у стеклотекстолитов на основе стеклотканей, а себестоимость их ниже на 20 %.

Стеклотекстолит на фенолоформальдегидном связующем (типа КАСТ) недостаточно вибропрочен, но зато по сравнению с обычным текстолитом он более теплостоек и имеет более высокие электроизоляционные свойства. Стеклотекстолиты на основе кремнийорганических смол (СТК, СК-9Ф, СК-9А) имеют относительно невысокую механическую прочность, но отличаются высокой теплостойкостью и морозостойкостью, обладают стойкостью к окислителям и другим химически активным реагентам, не вызывают коррозии металлов. Эпоксидные связующие (ЭД-8, ЭД-10) обеспечивают стеклотекстолитам наиболее высокие механические свойства и позволяют изготовлять из них крупногабаритные детали. Стеклотекстолиты на основе ненасыщенных полиэфирных смол (ПН-1) также не требуют высокого давления при прессовании и применяются для изготовления крупногабаритных деталей.

Материал СВАМ представляет собой стекловолокнистый анизотропный материал, в котором стеклянные нити сразу по выходе из фильер склеиваются между собой в виде стеклянного шпона и затем укладываются как в фанере. Связующие могут быть различными.

При соотношении продольных и поперечных слоев шпона 1: 1 0в = 460/500 МПа и Е >=35 000 МПа; при соотношении 10: 1 0В= 8504/950 МПа и Е = 68 000 МПа. Это характеризует СВАМ как конструкционный материал, обладающий большой жесткостью и высокой ударной вязкостью (а = 400/600 кДж/м2). С помощью макро- и микроструктурного анализа можно выявлять дефекты структуры: поры, раковины и трещины.

Наличие пор вызывает резкое снижение прочности материала.

Дефектность значительно влияет на прочность при межслойном сдвиге и продольном сжатии. Механические свойства стеклопластиков зависят от угла между направлением растягивающей силы и направлением армирующих волокон. Усилить материал в различных направлениях можно соответствующим расположением наполнителя (трубы, цилиндры, получаемые способом намотки). Физико-механические свойства термореактивных пластмасс даны в табл. 1.

Особенностью стеклопластиков является неоднородность механических свойств (разброс показателей достигает 7—15 %), обусловленных различными факторами: составом, структурой, технологией.

Степень анизотропии прочности на разрыв в продольном и поперечном направлениях OJo90 и срез т0/т90 (между слоями) для стеклопластиков достигает 2—Ю, что выше, чем для металлов. Анизотропия упругих свойств выражена слабее, чем анизотропия предела прочности. Механические свойства стеклопластиков зависят от температуры, с повышением температуры прочность снижается.

Длительно стеклопластики могут работать при температуре 200—400 °С, однако кратковременно в течение нескольких десятков секунд стеклопластики выдерживают несколько тысяч градусов, являясь аблирующими теплозащитными материалами. Они применяются в авиационной и ракетной технике.

Длительная прочность стеклопластиков зависит от их состава и внешних условий. Лучшие свойства имеют материалы на основе эпоксидных и фенолоформальдегидных смол. Работоспособность стеклопластиков выше, чем работоспособность металлов. Некоторые стеклотекстолита обладают выносливостью при изгибе до 1,5*107 циклов. Стеклопластики обладают высокой демпфирующей способностью, хорошо работают при вибрационных нагрузках.

Недостатком стеклопластиков является невысокий модуль упругости: Е = 20 000/58 000 МПа. Однако по удельной жесткости (Е/р.) они не уступают сталям, алюминиевым сплавам и титану, а по удельной прочности (о/р.) при растяжении превосходят металлы.

Однонаправленные стекловолокниты на высокомодульных волокнах имеют р = 2200 кг/м3; ов = 2100 МПа; Е = 70 000 МПа; а = 300/500 кДж/м2; е=1,3/2,4%; о/р. = 96 км.

Таким образом, стеклопластики являются конструкционными материалами, применяемыми для силовых изделий в различных отраслях техники: несущие детали летательных аппаратов, кузова и кабины автомашин, автоцистерны, железнодорожные вагоны, корпуса лодок, судов. Из стеклопластиков изготовляют корпуса машин, кожухи, защитные ограждения, вентиляционные трубы, контейнеры и др.

 

 

  1. Примеры изделий из пластмасс, применяемых в автомобилестроении и на ж/д транспорте.

 

Применение пластмасс (пластиков) в конструкции автомобилей приобретает все более широкие масштабы. Это объясняется в первую очередь тем, что по ряду показателей – плотности, коррозионной стойкости, антифрикционным и электротехническим, а также технологическим свойствам – пластики значительно превосходят традиционные материалы, используемые при изготовлении автомобиля. За последние 10 лет произошли принципиальные сдвиги в области применения пластмасс в автомобилестроении. Ранее из пластиков изготавливали детали только электротехнического, декоративного назначения.

Основными факторами, обусловливающими значительное внедрение пластмасс в конструкцию автомобилей, являются:

1. Во-первых, машина становится легче, а это  означает, что снижается расход  топлива.

2. Во-вторых, открывается возможность для  новых конструкционных решений, поскольку термопластичные полимеры  легко поддаются переработке  и, следовательно, позволяют воплотить  любые дизайнерские идеи. Благодаря  этому можно получать детали  самых хитроумных форм и цветов  без дополнительных операций  по механической обработке и  окраске.

Информация о работе Строение (молекулярное), свойства, классификация термореактивных пластмасс