Битумы

Автор работы: Пользователь скрыл имя, 22 Октября 2012 в 16:27, реферат

Краткое описание

Состав битумов. Свойства битумов. Применение битумов. Дорожные покрытия. Битумы как водозащитные средства. Кровельные материалы. Другие области применения. Классификация битумов. Методы производства битумов. Вакуумная перегонка. Деасфальтизация парафинами. Окисление воздухом. Состояние и перспективы производства битумов в России. Сравнение качества российского и зарубежного битума. Проблемы, связанные с производством битумов. Модернизация производства битума.

Прикрепленные файлы: 1 файл

битумы.doc

— 875.00 Кб (Скачать документ)

Схемы и режимы процесса окисления. Процесс окисления остаточных фракций нефти воздухом в промышленной практике осуществляется в аппаратах разного типа: кубах периодического действия, трубчатых змеевиковых реакторах и пустотелых колоннах непрерывного действия. Особенности окисления в этих аппаратах рассматриваются ниже.

Окисление в кубе. Окисление в кубе — пустотелом цилиндрическом аппарате с небольшой величиной отношения высоты рабочей зоны к диаметру (обычно около 1,5) — осуществляют в отечественной промышленности на старых установках или при производстве малотоннажных сортов битума. Этот процесс используется и за рубежом.

Процесс проводят периодически. В  нижнюю часть куба закачивают сырье до определенной высоты аппарата (не менее 2 м для обеспечения взрывобезопасности в соответствии с правилами техники безопасности) и начинают подачу воздуха. После достижения заданного уровня сырья в кубе постепенно повышают расход воздуха. Расход воздуха в процессе изменяют таким образом, чтобы температура окисления поддерживалась на требуемом уровне: при падении температуры увеличивают расход воздуха, при повышении — снижают.

Для повышения производительности куба сырье предварительно нагревают, что обеспечивает увеличение скорости окисления. Последующее повышение температуры процесса предупреждают подачей контролируемого количества воды в газовое пространство куба. После получения продукта с заданными свойствами его охлаждают за счет подачи воды в газовое пространство или циркуляции битума через холодильник. Подача воды в газовое пространство куба или в поток воздуха является наряду с циркуляцией битума через холодильник обычным приемом для поддержания заданной температуры окисления. Подача воды приводит также к снижению концентрации кислорода в газовом пространстве за счет образования водяного пара, что уменьшает взрывоопасность процесса. Кроме того, наличие водяного пара препятствует отложению коксообразных веществ (способных к самовозгоранию) на стенках газового пространства и в линии отработанных газов. С целью устранения опасности вспенивания и выброса битума воду следует подавать при температуре в кубе не ниже 200 °С, для чего необходимо предусматривать соответствующую блокировку.

Скорость окисления в кубе периодического действия возрастает с повышением температуры, давления и увеличением высоты зоны реакции. Последнее привело к тому, что современные   окислительные   аппараты — не   горизонтальные, а   вертикальные цилиндрические сосуды. Наряду с влиянием на скорость окисления температура и давление влияют также на качество продукции.

Окисление в трубчатом  реакторе. В отечественной практике для производства окисленных битумов применяют змеевиковой трубчатый реактор с вертикальным расположением труб. Окисление происходит в турбулентном потоке воздуха. Движение воздуха и окисляемого сырья, диспергированного в воздухе,— прямоточное. Прореагировавшая газожидкостная смесь поступает из реактора в испаритель, где разделяется на газы и жидкость. Газы уходят с верха испарителя на обезвреживание, жидкая фаза — битум — из нижней части испарителя откачивается в парк.

Значения удельного расхода  воздуха для производства дорожных   и   строительных   битумов    (50—300   м3/т),   должны обусловливать содержание сырья в воздухе, равное 0,4— 2,0% (об.) (для средних давлений и температур в реакторе). Однако при таком соотношении реагирующих фаз, вероятно, из-за недостаточной поверхности контакта реакция окисления не проходит достаточно полно. Степень полноты реакции повышается при увеличении содержания жидкой фазы в реакционной смеси, что достигается рециркуляцией части продукта. Это подтверждается следующими данными, полученными при производстве дорожных битумов в трубчатом реакторе (Омский НПК) при температуре окисления 270 °С и линейной скорости в трубах 7,0—9,4 м/с :

 

Содержание, % (об.)   

жидкости    в   реакционном потоке  8,2 11,3 13,7

кислорода   в газах окисления     4,0 2,0 1,0

 

Невысокое содержание кислорода в  отработанных газах окисления при содержании жидкости в реакционной смеси более 8,0% (масс.) свидетельствует о хорошем использовании кислорода воздуха в реакциях окисления. Примерно такое же содержание жидкости в реакционной смеси, обеспечивающее удовлетворительную работу реактора, отмечено и в других исследованиях. Таким образом, рециркуляция необходима   для   удовлетворительной   работы   трубчатого   реактора.

Особенностью производства битумов  в трубчатом реакторе является протекание стадии собственно окисления в режиме, близком к идеальному вытеснению (хотя в целом трубчатый реактор, работающий с рециркуляцией, соответствует более сложной модели и при значительных коэффициентах рециркуляции приближается по характеру структуры потоков жидкости к реактору идеального смешения). В этом случае для обеспечения приемлемой скорости реакции необходимо уже на вход в реактор подавать нагретые реагенты. В дальнейшем же во избежание перегрева реакционной смеси ее необходимо охлаждать. Таким образом, вначале требуются затраты энергии на нагрев сырья в трубчатой печи, а затем — на охлаждение реагирующих фаз потоком вентиляторного воздуха. При использовании легкого сырья или при сравнительно глубоком окислении (до строительных битумов) нагрев сырья в трубчатой печи можно заменить нагревом в теплообменниках битум — сырье. Средняя температура в реакторе должна быть не ниже 265 °С, иначе реакция окисления резко замедляется.

Окисление    в    пустотелой    колонне.    Наибольший    объем окисленных   битумов  получают  в   аппаратах   колонного  типа, которые представляют собой вертикальные пустотелые цилиндрические сосуды, работающие по схеме непрерывного действия. В колонне поддерживают определенный уровень окисляемого жидкофазного материала. Воздух на окисление подают в нижнюю часть колонны через маточник. Барботаж воздуха через слой жидкости приводит к ее практически полному перемешиванию, что подтверждается равенством температур по всей высоте зоны реакции  и одинаковыми свойствами продукта. Таким образом, по структуре потока жидкой фазы колонна близка к аппарату идеального смешения. В этих условиях безразлично, как вводить реагирующие фазы — прямоточно или противоточно. Обычно сырье подают под уровень раздела фаз, а битум откачивают с низа колонны, при этом твердые осадки в колонне не накапливаются.

В ряде случаев битум откачивают из колонны через уравнительную  емкость, наличие которой облегчает поддержание постоянства откачиваемого потока, что важно для обеспечения работы системы утилизации тепла битума (рис. 7). Во избежание перегрева колонны в результате выделения теплоты реакции окисления в газовое пространство подают воду, которая, испаряясь, понижает температуру в колонне и разбавляет газы окисления. Если такого разбавления недостаточно для снижения концентрации кислорода до безопасной, в колонну вводят также водяной пар, вырабатываемый в парогенераторе за счет избыточного тепла сырья и продукта. Для поддержания теплового равновесия процесса применяют также циркуляцию части битума через выносные холодильники.

 


 

 

 

 

 

 

 

 

 

 

 

Рис. 7. Схема окисления в колонне с утилизацией тепла:

1 — кипятильники; 2 — уравнительная емкость; 3 — окислительная колонна; 4 — парогенератор;  5 — сепаратор с циклоном;  6 — огнепреградитель;   7 — печь;   8 — компрессор;   9 —насосы.

 

Последовательное окисление. Часто процесс окисления осуществляют в последовательно работающих окислительных реакторах. При этом удобнее поддерживать тепловое равновесие процесса рециркуляцией охлажденного потока жидкости, так как охлаждению подвергается не конечный, высоковязкий и легкозастывающии в холодильниках продукт, а промежуточный, менее вязкий. В последовательную цепочку можно объединять как одинаковые, так и разные по конструкции аппараты. Несколько десятилетий назад получила распространение так называемая кубовая батарея непрерывного действия — ряд кубов, в которых проводилось последовательное окисление.

Сырье непрерывно закачивается в первый куб, установленный на высоком постаменте, и затем перетекает в следующие кубы, расположенные на менее высоких постаментах. Воздух подается в каждый куб отдельно. Такая схема позволяет проводить процесс окисления непрерывно, что облегчает условия производства. Работа каждого куба в отдельности аналогична работе окислительной колонны, но ввиду меньшей высоты кубов процесс окисления менее эффективен, поэтому схема с последовательным окислением в кубах теряет свое значение.

Последовательное окисление осуществляется и в бескомпрессорном реакторе, представляющем собой горизонтально расположенный сосуд, разделенный на секции. Сырье здесь перетекает через переливные устройства из одной секции в другую. По причине небольшой высоты жидкой фазы горизонтальный аппарат характеризуется малым временем контакта кислорода воздуха с окисляемой массой и, как следствие,— невысокой эффективностью.

Предложено последовательное окисление  в системе трубчатый реактор — испаритель. В отличие от обычной схемы работы трубчатого реактора воздух подается в испаритель, работающий в этом случае как пустотелая колонна. Промышленное испытание такой схемы показало возможность ее осуществления. Однако экономически это нецелесообразно, так как обычная пустотелая колонна, являющаяся менее эффективным аппаратом, чем трубчатый реактор, используется на конечной стадии процесса, где окисление идет труднее. Кроме того, на действующих блоках трубчатых реакторов с определенной пропускной способностью по газовой фазе подача воздуха в испаритель приведет к нарушению режима его работы или потребует ограничения  подачи  воздуха  в трубчатый  реактор.

Эффективнее иное сочетание трубчатого реактора и колонны. Сырье подается в колонну, а полупродукт из колонны  — в трубчатый реактор. По такой схеме трубчатый реактор используется на конечной стадии окисления, когда имеет место недостаточно полное использование кислорода воздуха в колонне. Включение же менее энергоемкой колонны (что рассматривается ниже) в схему снижает общие энергетические затраты. Так, при получении дорожных битумов по двухступенчатой схеме затраты пара, электроэнергии и топлива примерно на 25% ниже по сравнению с затратами при одноступенчатой схеме окисления в трубчатом реакторе. Преимущества двухступенчатой схемы еще более заметны при производстве строительных битумов.

Предпочтительность объединения  в одну цепочку разных по конструкции и принципу работы "окислительных реакторов можно показать на примере производства битумов на Сызранском НПЗ. Здесь окисление осуществляется последовательно в колонне, трубчатом реакторе и кубе (рис. 8). Использование колонны в начале технологической цепочки позволяет устранить затраты тепла на предварительный нагрев сырья. В колонне получают дорожный битум, часть которого откачивают в товарные емкости, а остальное количество, не охлаждая, направляют на окисление в трубчатый реактор. В трубчатом реакторе получают строительный битум четвертой марки, причем вследствие небольшой степени окисления нет необходимости в затратах энергии на обдув реактора охлаждающим воздухом: охлаждение происходит за счет тепловых потерь. Полученный битум в основном выводится из процесса как товарный продукт, а оставшаяся часть направляется в кубы периодического действия для получения строительного битума. Применение кубов здесь оправдывается, несмотря на плохое использование кислорода воздуха, получением малотоннажной продукции.

.

 

 

 

 

 

 

 

 

Рис. 8. Схема  последовательного окисления в  окислительных аппаратах разного типа:1 — колонна; 2 — трубчатый реактор змеевикового типа; 3 — испаритель; 4 — кубы периодического действия.

 

  1. Состояние и перспективы  производства битумов в России

Недостаточное производство нефтяных битумов в России – следствие  целого ряда объективных и субъективных причин. К объективным причинам относится  сезонность потребления, и следовательно  производства, дорожных марок битумов, а также резко возросшая в последние 10–15 лет степень «парафинистости» (повышенное содержание парафиновых углеводородов нормального строения) нефтей. Последнее обстоятельство не позволяет обеспечить весь необходимый комплекс эксплуатационных свойств дорожных битумов без использования современных технологий.

Вместе с тем необходимо отметить, что мировой опыт подсказывает вполне конкретные пути решения этих проблем. Так, влияние сезонности потребления дорожных битумов во многих случаях можно демпфировать производством битумных материалов, имеющих определенную всесезонность применения или длительный срок хранения (например, битумные эмульсии или полимерно-битумные материалы). Зависимость же качества дорожных битумов от качества сырья в большинстве стран Европы устранена целевым применением специальных тяжелых, смолистых нефтей. К сожалению, в России это затруднено как из-за существующего централизованного трубопроводного снабжения сырьем большинства крупных НПЗ, так и отсутствия на них технологических возможностей раздельной переработки двух и более типов нефтей.

Важнейшая же из субъективных причин – неадекватная система ценообразования, при которой отпускная цена битума составляет лишь 60–70% от стоимости исходной нефти. При этом технологическая схема производства нефтяного битума включает, как известно, минимум пять сложнейших процессов, требующих соответствующих материальных, эксплуатационных, энергетических и прочих затрат. Такая «рентабельность» битумного производства на большинстве предприятий России (см. таблицу) возникает вследствие:

      • низкой загруженности существующих производственных мощностей (менее 40% при среднемировом уровне 90–96%);
      • применения устаревших технологий и оборудования;
      • несоответствия качества сырья;
      • отсутствия современных систем налива и затаривания;
      • низкой степени автоматизации управления всеми стадиями процесса.

Перечисленные выше причины объясняют  не только низкую инвестиционную активность крупнейших российских нефтяных компаний по созданию современных битумных производств, но и практически парадоксальную ситуацию, при которой компаниям экономически выгодно не только не повышать качество производимых дорожных битумов, но и полностью прекратить их выпуск. При этом альтернативные технологические способы переработки и утилизации гудронов (производство смазочных масел или кокса, газификация, вовлечение в котельные топлива или в сырье крекинга и др.) на НПЗ имеют достаточно высокую степень экономической привлекательности. Усугубляет ситуацию развитие «дикого российского бизнеса», направленного на извлечение прибыли любым путем, даже за счет качества продукции, и непредсказуемость годовой и сезонной ценовой политики крупнейших российских нефтяных компаний. Это приводит как к нецивилизованному коммерческому хранению битумов и извлечению прибыли за счет практически удвоения цен на них в строительный сезон, так и к строительству малотоннажных региональных установок (вакуумный и битумный блоки) с  неконтролируемым качеством сырья и продуктов. В любом случае говорить о долговечности дорожных покрытий на основе таких материалов не приходится.

Информация о работе Битумы