Волновые свойства света

Автор работы: Пользователь скрыл имя, 23 Декабря 2013 в 13:53, курсовая работа

Краткое описание

Оптика - это учение о физических явлениях, связанных с распространением коротких электромагнитных волн, длина которых составляет приблизительно 10-5-10-7 м. Значение именно этой области спектра электромагнитных волн связано с тем, что внутри нее в узком интервале длин волн от 400-760 нм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом. Он ограничен с одной стороны рентгеновскими лучами, а с другой - микроволновым диапазоном радиоизлучения. С точки зрения физики происходящих процессов выделение столь узкого спектра электромагнитных волн (видимого света) не имеет особого смысла, поэтому в понятие "оптический диапазон" включает обычно ещё и инфракрасное и ультрафиолетовое излучение.

Прикрепленные файлы: 1 файл

Основные характеристики и закономерности волновой оптики. Интерференция, дифракция, поляризация..doc

— 1.17 Мб (Скачать документ)

Введение

Оптика - это учение о физических явлениях, связанных с распространением коротких электромагнитных волн, длина которых составляет приблизительно 10-5-10-7 м. Значение именно этой области спектра электромагнитных волн связано с тем, что внутри нее в узком интервале длин волн от 400-760 нм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом. Он ограничен с одной стороны рентгеновскими лучами, а с другой - микроволновым диапазоном радиоизлучения. С точки зрения физики происходящих процессов выделение столь узкого спектра электромагнитных волн (видимого света) не имеет особого смысла, поэтому в понятие "оптический диапазон" включает обычно ещё и инфракрасное и ультрафиолетовое излучение.

Ограничение оптического  диапазона условно и в значительной степени определяется общностью технических средств и методов исследования явлений в указанном диапазоне. Для этих средств  и методов характерны основанные на волновых свойствах излучения формирование изображений оптических предметов с помощью приборов, линейные размеры которых много больше длины λ излучения, а так же использование приёмников света, действие которых основано на его квантовых свойствах.

По традиции оптику принято подразделять на геометрическую, физическую и физиологическую. Геометри́ческая о́птика — раздел оптики, изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств. Краеугольным приближением геометрической оптики является понятие светового луча. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

Физи́ческая о́птика — раздел оптики, изучающий оптические явления, выходящие за рамки приближения геометрической оптики. К таким явлениям относятся дифракция, интерференция света, поляризационные эффекты, а также эффекты, связанные с распространением электромагнитных волн в нелинейных и анизотропных средах. 

Одна из важнейших традиционных задач оптики - получение изображений, соответствующих оригиналам как по  геометрической форме, так и по распределению яркости решается главным образом геометрической оптикой с привлечением физической оптики. Геометрическая оптика дает ответ на вопрос, как следует строить оптическую систему для того, чтобы каждая точка объекта изображалась бы также в виде точки при сохранении геометрического подобия изображения объекту. Она указывает на источники искажений изображения и их уровень в реальных оптических системах. Для построения оптических систем существенна технология изготовления оптических материалов с требуемыми свойствами, а также технологию обработки оптических элементов. Из технологических соображений чаще всего применяют линзы и зеркала со сферическими поверхностями, но для упрощения оптических систем и повышения качества изображений при высокой светосиле используют оптические элементы.

Волновая о́птика — раздел оптики, который описывает распространение света с учётом его волновой природы.

 

 

 

 

 

 

 

 

 

 

 

 

Глава 1. История  развития теории света

Одна из первых теорий света –  теория зрительных лучей – была выдвинута греческим философом Платоном около 400 г. до н. э. Данная теория предполагала, что из глаза исходят лучи, которые, встречаясь с предметами, освещают их и создают видимость окружающего мира. Взгляды Платона поддерживали многие ученые древности и, в частности, Евклид (3 в до н. э.), исходя из теории зрительных лучей, основал учение о прямолинейности распространения света, установил закон отражения.

В те же годы были открыты  следующие факты:

  • прямолинейность распространения света;
  • явление отражения света и закон отражения;
  • явление преломления света;
  • фокусирующее действие вогнутого зеркала.

Древние греки положили начало отрасли оптики, получившей позднее название геометрической. Наиболее интересной работой по оптике, дошедшей до нас из средневековья, является работа арабского ученого Альгазена. Он занимался изучением отражения света от зеркал, явления преломления и прохождения света в линзах. Альгазен впервые высказал мысль о том, что свет обладает конечной скоростью распространения. Эта гипотеза явилась крупным  шагом в понимании природы света.

В эпоху Возрождения  было совершено множество различных  открытий и изобретений; стал утверждаться экспериментальный метод, как основа изучения и познания окружающего  мира.

На базе многочисленных опытных фактов в середине XVII века возникают две гипотезы о природе световых явлений:

  • корпускулярная, предполагавшая, что свет есть поток частиц, выбрасываемых с большой скоростью светящимися телами;
  • волновая, утверждавшая, что свет представляется собой продольные колебательные движения особой светоносной среды – эфира – возбуждаемой колебаниями частиц светящегося тела.

Все дальнейшее развитие учения о  свете вплоть до наших дней –  это история развития и борьбы этих гипотез, авторами которых были И. Ньютон и Х. Гюйгенс. Согласно корпускулярной теории, свет есть поток материальных частиц (корпускул), летящих с большой скоростью от источника света. Согласно волновой теории, свет представляет собой волну, исходящую от источника света и распространяющуюся с большой скоростью в «мировом эфире» — неподвижной упругой среде, непрерывно заполняющей всю Вселенную. Обе теории удовлетворительно объясняли закономерности, присущие некоторым световым явлениям, например законы отражения и преломления света. Однако такие явления, как интерференция, дифракция и поляризация света, не укладывались в рамки этих теорий.

Обе теории  длительное время существовали параллельно. Ни одна из них не могла одержать решающей победы. Лишь авторитет Ньютона заставлял  большинство ученых отдавать предпочтение корпускулярной теории. Однако на основе корпускулярной теории было трудно объяснить, почему световые пучки, пересекаясь в пространстве, никак не действуют друг на друга. Ведь световые частицы должны сталкиваться и рассеиваться.

Волновая же теория это легко объясняла. Волны, например, на поверхности воды, свободно проходят друг сквозь друга, не оказывая взаимного влияния.

Однако прямолинейное  распространение света, приводящее к образованию за предметами резких теней, трудно объяснить, исходя из волновой теории. При корпускулярной же теории прямолинейное распространение света является просто следствием закона инерции. Такое неопределенное положение относительно природы света сохранялось до начала XIX века, когда были открыты явления дифракции света (огибания светом препятствий) и интерференция света (усиление или ослабление освещенности при наложении световых пучков друг на друга). Благодаря исследованиям Юнга (1801г.) и Френеля (1815г.) волновая теория была в значительной мере развита и усовершенствована. В ее основу лег принцип Гюйгенса — Френеля. Волновая теория Гюйгенса — Юнга — Френеля успешно объяснила почти все известные в то время световые явления, в том числе интерференцию, дифракцию и поляризацию света, в связи с чем эта теория получила всеобщее признание, а корпускулярная теория Ньютона была отвергнута. Поэтому казалось, что волновая теория одержала окончательную и полную победу.

Слабым местом волновой теории являлся гипотетический «мировой эфир», реальность существования которого оставалась весьма сомнительной. Однако в 60-х годах прошедшего столетия, когда Максвелл разработал теорию единого электромагнитного поля, необходимость в «мировом эфире» как особом носителе световых волн отпала: выяснилось, что свет представляет собой электромагнитные волны и, следовательно, их носителем является электромагнитное поле. Видимому свету соответствуют электромагнитные волны длиной от 0,77 до 0,38 мкм, создаваемые колебаниями зарядов, входящих в состав атомов и молекул. Таким образом, волновая теория о природе света эволюционировала в электромагнитную теорию света.

Одним из важнейших экспериментальных  доказательств справедливости электромагнитной теории света послужили опыты  Физо (1849 г.), Фуко (1850 г.) и Майкельсона (1881 г.): экспериментальное значение скорости распространения света совпало с теоретическим значением скорости распространения электромагнитных волн, полученным из электромагнитной теории Максвелла. Другим не менее важным подтверждением электромагнитной теории явились опыты П. Н. Лебедева (1899 г.): измеренное им световое давление на твердые тела  оказалось равным давлению электромагнитных волн, рассчитанному на основе теории Максвелла.

Представление о волновой (электромагнитной) природе света  оставалось незыблемым вплоть до конца XIX в. Однако к этому времени накопился достаточно обширный материал, не согласующийся с этим представлением и даже противоречащий ему. Изучение данных о спектрах свечения химических элементов, о распределении энергии в спектре теплового излучения черного тела, о фотоэлектрическом эффекте и некоторых других явлениях привело к необходимости предположить, что излучение, распространение и поглощение электромагнитной энергии носит дискретный (прерывистый) характер, т. е. свет испускается, распространяется и поглощается не непрерывно (как это следовало из волновой теории), а порциями (квантами). Исходя из этого предположения немецкий физик Планк в 1900 г. создал квантовую теорию электромагнитных процессов, а Эйнштейн в 1905 г. разработал квантовую теорию света, согласно которой свет представляет собой поток световых частиц — фотонов.  Таким образом, в начале текущего столетия возникла новая теория о природе света — квантовая теория, возрождающая в известном смысле корпускулярную теорию Ньютона. Однако фотоны существенно (качественно) отличаются от обычных материальных частиц: все фотоны движутся со скоростью, равной скорости света, обладая при этом конечной массой («масса покоя» фотона равна нулю). Важную роль в дальнейшем развитии квантовой теории света сыграли теоретические исследования атомных и молекулярных спектров, выполненные Бором (1913 г.), Шредингером (1925 г.), Дираком (1930 г.), Фейнманом (1949 г.), В. А. Фоком (1957 г.) и др.

По современным воззрениям, свет — сложный электромагнитный процесс, обладающий как волновыми, так и корпускулярными свойствами. В некоторых явлениях (интерференция, дифракция, поляризация света) обнаруживаются волновые свойства света; эти явления описываются волновой теорией. В других явлениях (фотоэффект, люминесценция, атомные и молекулярные спектры) обнаруживаются корпускулярные свойства света; такие явления описываются квантовой теорией. Таким образом, волновая (электромагнитная) и корпускулярная (квантовая) теория не отвергают, а дополняют друг друга, отражая тем самым двойственный характер свойств света. Здесь мы встречаемся с наглядным примером диалектического единства противоположностей: свет является и волной и частицей. Современная физика стремится создать единую теорию о природе света, отражающую двойственный корпускулярно-волновой характер света. 

         В своей курсовой работе я  рассмотрю лишь волновые свойства  света.

Глава 2. Волновые свойства света

2.1 Интерференция

Интерференция света, пространственное перераспределение энергии светового излучения при наложении двух или нескольких световых волн; частный случай общего явления интерференции волн. Интерференцию света наблюдали очень давно, но только не отдавали себе в этом отчет. Многие видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина на поверхности воды. Именно интерференция света делает мыльный пузырь столь достойным восхищения. Некоторые явления интерференции наблюдались ещё И. Ньютоном в 17 в., однако не могли быть и объяснены с точки зрения его корпускулярной теории. Правильное объяснение интерференции света как типично волнового явления было дано в начале 19 в. французским физиком О. Ж. Френелем и английским учёным Т. Юнгом.

Интерференция света - это сложение полей световых волн от двух или нескольких (сравнительно небольшого числа) источников. В общем случае поляризация каждой из интерферирующих волн (т. е. направление, вдоль которого колеблется вектор электрического поля; магнитное поле не учитываем) имеет свое направление, и сложение двух волн есть векторное сложение. Обычно рассматривают интерференцию волн, имеющих одинаковую поляризацию. Тогда волны складываются алгебраически.

Интерференцию световых волн, сходящихся в некоторой точке пространства, можно непосредственно наблюдать, если только эти волны являются когерентными (т. е. имеют постоянную разность фаз), или, если когерентны источники этих волн. Нетрудно понять, что никакие два светящихся тела не могут быть когерентными источниками света. В самом деле, свет, исходящий от светящегося тела (например, от нити электролампы), представляет собой совокупность множества электромагнитных волн, излучаемых отдельными частицами (атомами и молекулами) тела. Условия излучения этих частиц очень быстро и беспорядочно изменяются. Для того чтобы два светящихся тела являлись когерентными источниками света, волны, излучаемые всеми частицами первого тела, должны отличаться по фазе от волн, излучаемых всеми частицами второго тела, все время на одну и ту же величину. Такое событие практически совершенно невероятно. Поэтому для получения когерентных источников прибегают к искусственному приему: «раздваивают» свет, исходящий от одного источника. Это «раздвоение» можно осуществить, например, посредством экрана с двумя малыми отверстиями (рис. 1).

Рис.1

В соответствии с принципом Гюйгенса — Френеля источник света S создает  в отверстиях экрана вторичные источники  света  и . Очевидно, что всякое изменение фазы волн, излучаемых основным источником S, сопровождается точно такими же изменениями фаз волн, излучаемых вторичными источниками и . Следовательно, у волн, излучаемых

источниками и , разность фаз все время остается неизменной, т. е. источники являются когерентными.

Другой способ получения  когерентных источников основан на отражении света от двух плоских зеркал, установленных под углом а, близким к 180° (рис. 2). Эта оптическая система называется зеркалами Френеля.

Рис.2

Когерентными источниками  служат изображения    и основного источника света S. Если в разности хода лучей укладывается целое число волн (четное число полуволн), т. е. если то в точке Р будет максимум света (l— длина волны, n = 0,1, 2, 3, ...).  Если же в разности хода укладывается нечетное число полуволн, т. е. если то в точке Р будет минимум света (темнота).

Информация о работе Волновые свойства света