Принципы управления

Автор работы: Пользователь скрыл имя, 09 Октября 2014 в 05:31, курс лекций

Краткое описание

Теория автоматического управления (ТАУ) появилась во второй половине 19 века сначала как теория регулирования. Широкое применение паровых машин вызвало потребность в регуляторах, то есть в специальных устройствах, поддерживающих устойчивый режим работы паровой машины. Это дало начало научным исследованиям в области управления техническими объектами. Оказалось, что результаты и выводы данной теории могут быть применимы к управлению объектами различной природы с различными принципами действия. В настоящее время сфера ее влияния расширилась на анализ динамики таких систем, как экономические, социальные и т.п. Поэтому прежнее название “Теория автоматического регулирования” заменено на более широкое - “Теория автоматического управления”.

Прикрепленные файлы: 1 файл

Курс лекций по ТАУ.doc

— 1.63 Мб (Скачать документ)

Пусть имеется дифференциальное уравнение замкнутой САУ: 

 

 

 (a0pn + a1pn-1 + a2pn-2 + ... + (an)y = (b0pm + b1pm-1 + ... + bm)u. 

 

Передаточная функция САУ

,  

 

где p~1,p~2,...,p~m - нули передаточной функции, p1,p2,...,pn - полюса передаточной функции.

 Переходный процесс зависит как от полюсов, так и от нулей, то есть определяется как левой, так и правой частями дифференциального уравнения. Это существенно усложняет анализ. Поэтому рассмотрим частный, но весьма распространенный случай, когда передаточная функция замкнутой САУ не имеет нулей: 

 

.  

 

Тогда уравнение динамики приобретает вид:  

 

(a0pn + a1pn-1 + a2pn-2 + ... + an)y = b0u. 

 

Общее решение данного уравнения имеет вид:  

 

y(t) = yсв + yвын = åAiepit + bо/an.

Время переходного процесса tпп определяется длительностью свободного процесса, который представляет собой сумму n экспоненциально затухающих составляющих (рис.88). Затухание каждой из составляющих определяется вещественной частью соответствующего плюса pi, которая для устойчивых систем должна быть отрицательна. Длительность переходного процесса определяется в основном свободной составляющей, имеющей наименьшее затухание, то есть наименьшее абсолютное значение вещественной части соответствующего полюса.

Если изобразить все полюса в комплексной плоскости корней (рис.89), то данный полюс (или пара комплексно сопряженных полюсов) будет наиболее близко расположен к мнимой оси.

Для приблизительной оценки качества САУ на плоскости корней выделяется область в виде трапеции, на сторонах которой находится хотя бы по одному корню, все остальные корни - внутри данной области. Эта область характеризуется параметрами: h - степень устойчивости (равна расстоянию от мнимой оси до ближайшего корня или пары комплексно сопряженных корней); m = tg(j) - колебательность (характеризует колебательность переходного процесса и величину перерегулирования); x - своего названия не имеет, равна вещественной части наиболее удаленного от мнимой оси корня.

По степени устойчивости h можно приблизительно вычислить время переходного процесса, которое определяется по моменту, когда свободная составляющая с наименьшим затуханием уменьшится до величины Ai , где Ai - начальное значение данной составляющей, то на рис.84:  

 

yсв3(t) = A3

=
A3 = >

 

В общем случае, когда передаточная функция замкнутой САУ имеет нули, то использование данного метода может дать большую ошибку. Однако всегда качество управления будет тем лучше, чем больше h и меньше m, поэтому данный метод имеет смысл для любых САУ, но приближенно.

Зная значения h, x, m можно оценить область, за которую кривая переходного процесса выходить не будет (рис.90). Для этого строятся две кривые: u(t,h) - миноранта и v(t,h) - мажоранта, ограничивающая кривую переходного процесса соответственно снизу и сверху так, что u(t,h) e(t) v(t,h), где e(t) = yo-y(t). Формулы для определения миноранты и мажоранты берутся в справочниках для конкретных случаев. 

 

12.2. Интегральные критерии качества  

 

Интегральные критерии позволяют судить о качестве управления путем вычисления интегралов от некоторых функций управляемой величины. Эта функция выбирается таким путем, чтобы значение определенного интеграла от этой функции по времени от 0 до + было однозначно связано с качеством переходного процесса. В то же время данный интеграл должен сравнительно просто вычисляться через коэффициенты уравнений исследуемой системы.

Например, если переходная характеристика является монотонной, то можно утверждать, что качество переходного процесса тем лучше, чем меньше площадь, ограниченная данной кривой и установившимся значением управляемой величины (рис.91). Она равна площади, ограниченной кривой изменения свободной составляющей управляемой величины и осью абсцисс.

Если система устойчива, то свободная составляющая управляемой величины в пределе стремится к нулю , поэтому площадь ограниченная данной кривой имеет конечное значение и определяется по формуле:  

 

Joo =

 

Величина Joo представляет собой линейную оценку качества управления.

Чем она меньше, тем выше быстродействие системы. При выборе параметров системы стремятся обеспечить минимум Joo.  Если имеется какой то варьируемы параметр A, то можно построить кривую Joo = f(A) (рис.92). Ее минимум, определяемый из условия dJoo/dA = 0, даст оптимальное значение A.

Пусть дано уравнение динамики замкнутой САУ:    

 

(a0pn + a1pn-1 + a2pn-2 + ... + an)y = (b0pm + b1pm-1 + ... + bm)u.  

 

Свободный процесс описывается однородным дифференциальным уравнением:  

 

(a0pn + a1pn-1 + ... + an)yсв = 0,  

 

следовательно:    

 

yсв =

 

 

yсв =

 

 

Joo =

св(t)dt =

 

Пусть при t = 0 САУ имела следующие начальные условия:  

 

yсв(0) = y0,

= y0’, ...,
= y0(n-1).  

 

Кроме того  

 

yсв(

) = 0,
(
) = 0,...,
(
) = 0,  

 

так как процесс затухает и при t свободная составляющая и все производные становятся равны нулю. Подставляя эти значение, получаем: 

 

Joo = (a0y0(n-1) + a1y0(n-1) + ... + an-1y0)/(an.  

 

То есть линейную оценку качества регулирования можно легко вычислить, зная начальные условия и коэффициенты дифференциального уравнения. Возможны и другие линейные оценки качества, но они используются реже, например:  

 

J01 =

св(t)
t
dt;  

 

J0n =

св(t)
tndt. 

 

 

 

Линейные оценки качества неприменимы при колебательном процессе. Так как площади, ограниченные кривой yсв(t) и осью абсцисс складываются с учетом знака, то минимальному значению Joo может соответствовать процесс с большим числом колебаний и малым быстродействием (рис.93). В этом случае более эффективны квадратичные оценки качества, например,  

 

J20 =

yсв2(t)dt.  

 

Значение этого интеграла соответствует площади под кривой yсв2(t) и осью абсцисс, которая всегда положительна (рис.94).

Выбирая параметры САУ по минимуму J20 мы приближаем кривую yсв(t) к осям координат, что приводит к уменьшению времени регулирования (рис.95). Вывод формулы для вычисления этой оценки сложен, поэтому ограничимся замечанием, что значение  вычисляется через коэффициенты дифференциального уравнения a0...an,b0...bm. При вычислении слагаемых в этой формуле используются определители Гурвица, так что даже расчет по ней сопряжен с определенными трудностями и требует использования ЭВМ или специальных таблиц.

При выборе параметров САУ по минимуму J20 часто получают нежелательную колебательность процесса, так как приближение yсв(t) к оси ординат вызывает резкое увеличение начальной скорости, что в свою очередь может вызвать большое перерегулирование, уменьшив при этом запас устойчивости. Для того, чтобы обеспечить плавность протекания процесса, в квадратичную оценку качества добавляется слагаемое, зависящее от скорости изменения регулируемого параметра yсв’(t). Получаем критерий качества  

 

J21 =

св2(t) + t2
(yсв’(t))2]dt,  

 

где - некоторая наперед заданная постоянная времени, определяющая весовое соотношение между оценкой по yсв и по yсв’. При малых значениях уменьшение колебательности будет незначительным. Завышение увеличит время переходного процесса так, что ее выбор определяется конкретными условиями.

Этот интеграл имеет наименьшее значение, если переходный процесс соответствует экспоненте с постоянной времени (рис.96). Другими словами, по соображениям качества управления следует стремиться к тому, чтобы переходная характеристика замкнутой САУ как можно меньше отличалась от характеристики инерционного звена первого порядка, имеющего наперед заданную постоянную времени , значение которой определяются техническими условиями.

Задача выбора параметров САУ по минимуму J20 и J21 решается аналитически только в случае невысокого порядка дифференциального уравнения. Иначе используют ЭВМ.

Лекция 13. Частотные методы оценки качества

13.1. Теоретическое обоснование

 

 

Частотные методы основаны на привычном для инженеров графическом изображении динамических характеристик, которые можно снять экспериментально, поэтому они находят широкое применение. В частности зная АФЧХ разомкнутой САУ Wp(j ), можно построить АФЧХ замкнутой САУ  

 

Wз(j

) =
= Pз(
) + jQз(
),  

 

а по ней - требуемую для частотных методов вещественную ЧХ замкнутой САУ Pз( ). Зная ВЧХ замкнутой САУ, можно приближенно построить переходную характеристику САУ h(t), которую снять экспериментально очень трудно, и по ней определить показатели качества управления.

Теоретическое обоснование этого в том, что любую функцию, в том числе и единичную ступенчатую, можно разложить в ряд Фурье: 

 

1(t) = A0 +

Ak1cos(k
t) + Ak2sin(k
t)].  

 

Так как замкнутая САУ линейна, то при подаче на вход суммы сигналов с выхода снимается сигнал, равный сумме реакций на каждый из входных сигналов. Входному сигналу ui(wi,t) на выходе будет соответствовать составляющая выходного сигнала yi( i,t) = W(j i) ui( i,t), тогда 

 

 

 

h(t) =

= A0W(0) +
(jkw)
[Ak1cos(kwt) + Ak2sin(kwt)].

Преобразование этого выражения приводит к двум равнозначным формулам определения h(t) через составляющие ВЧХ:  

 

;
,  

 

где P( ) и Q( ) - вещественная и мнимая части АФЧХ замкнутой САУ. Предпочтение обычно оказывают первой формуле, хотя с одинаковым успехом можно использовать и вторую.

Точно вычислить эти интегралы можно только с помощью ЭВМ, но в практике нашел широкое применение приближенный способ построения переходной характеристики на основе линейной аппроксимации ВЧХ замкнутой САУ, который называется метод трапеций. Прежде, чем рассматривать этот метод, рассмотрим без доказательства основные соотношения между ВЧХ замкнутой САУ и ее переходной характеристикой. 

 

13.2. Основные соотношения между ВЧХ  и переходной характеристикой

1. Начальное значение ВЧХ P(0) равно установившемуся значению переходной характеристики hуст = P( ) = P(0). 

 

 

 

2.  САУ с вогнутой ВЧХ (рис.97а кривая 1) не имеет перерегулирования, то есть ей соответствует монотонная переходная характеристика (рис.97б кривая 1).

3.  САУ с трапециидальной ВЧХ (рис.97а кривая 2, такую ВЧХ можно аппроксимировать трапецией) имеет апериодическую переходную характеристику (рис.97б кривая 2), причем величина перерегулирования smax не превышает 18%.

4. Кривые 3 и 4 на рис.97а соответствуют колебательной переходной характеристике (рис.97б кривая 3). Величина перерегулирования smax тем больше, чем больше отношение P( )max/P(0). Если это отношение стремится к бесконечности, то есть имеет место разрыв ВЧХ, то переходная характеристика приобретает вид незатухающих колебаний и САУ переходит на границу устойчивости. Величину перерегулирования можно приблизительно вычислить исходя из соотношения  

 

smax <

.  

 

Наличие отрицательного экстремума у ВЧХ (кривая 4) свидетельствует о повышенной колебательности системы.

5.  Время переходного процесса tпп можно оценить приблизительно по виду ВЧХ без построения кривой h(t). Оно определяется полосой частот wп, при которых P( ) > 0.2P(0) (рис.98). п называют интервалом положительности P( ). При этом всегда tпп >p/ п. Для кривой 1 рис.97а: tпп 4 / п. Для кривой 2: tпп (1..4)4 / п. Для кривых 3 и 4 коэффициент пропорциональности больше, причем он тем больше, чем больше отношение P( )max/P(0). 

 

13.3. Метод трапеций

Этот метод основан на свойствах ВЧХ, следующих из полученной ранее формулы, которые мы рассмотрим без доказательств.

1. Свойство линейности: если ВЧХ можно представить суммой  P( ) = SPi( ), то каждой составляющей Pi( ) будет соответствовать составляющая переходной характеристики

 

 

,  

 

при этом h(t) =

(рис.99а). Поэтому, если ВЧХ имеет сложную форму, ее можно представить суммой трапециидальных ВЧХ, примыкающих к вертикальной оси. Затем все трапеции перерисовывают, перенося их основания на горизонтальную ось (рис.99б). Каждой такой трапеции соответствует своя составляющая переходной характеристики hi(t), имеющая апериодический характер (рис.99в).

Результирующая кривая строится суммированием данных составляющих.

2. Если умножить P( ) на постоянный множитель а, то соответствующая ей h(t) также умножается на а. То есть, чем выше ВЧХ, тем выше и переходная характеристика (рис.100).

3. Если аргумент w в выражении ВЧХ P( ) умножить на постоянный множитель а, то аргумент в h(t) будет делиться на это число, то есть  

 

.

То есть переходный процесс в случае P(a ) будет протекать в а раз быстрее, чем в случае P( ) (рис.101).

Рассмотрим трапециидальную ВЧХ (рис.102а). Она характеризуется коэффициентом наклона k = 1 2. Под единичной трапецией (рис.102б) понимают трапецию, две стороны которой совпадают с осями координат и равны по 1 в соответствующих масштабах; наклон k может быть различным: P1( ) = .

Подставляя это определение в выражение для определения h(t) можно вычислить кривую переходного процесса, соответствующую единичной трапециидальной ВЧХ. Эти расчеты были проделаны и составлены таблицы hk -функций.

Информация о работе Принципы управления