Принципы управления

Автор работы: Пользователь скрыл имя, 09 Октября 2014 в 05:31, курс лекций

Краткое описание

Теория автоматического управления (ТАУ) появилась во второй половине 19 века сначала как теория регулирования. Широкое применение паровых машин вызвало потребность в регуляторах, то есть в специальных устройствах, поддерживающих устойчивый режим работы паровой машины. Это дало начало научным исследованиям в области управления техническими объектами. Оказалось, что результаты и выводы данной теории могут быть применимы к управлению объектами различной природы с различными принципами действия. В настоящее время сфера ее влияния расширилась на анализ динамики таких систем, как экономические, социальные и т.п. Поэтому прежнее название “Теория автоматического регулирования” заменено на более широкое - “Теория автоматического управления”.

Прикрепленные файлы: 1 файл

Курс лекций по ТАУ.doc

— 1.63 Мб (Скачать документ)

 

АЧХ: ,  

 

значит ЛАЧХ равна сумме ЛАЧХ звеньев: .

ЛФЧХ: .

Таким образом ЛАЧХ и ЛФЧХ разомкнутой САУ строят путем графического сложения ЛАЧХ и ЛФЧХ звеньев. При этом ограничиваются построением асимптотической ЛАЧХ.

Для построения ЛАЧХ и ЛФЧХ рекомендуется следующий порядок:

1) раскладывают сложную передаточную  функцию на множители, являющиеся передаточными функциями типовых динамических звеньев (порядок полиномов числителя и знаменателя не выше второго);

2) вычисляют сопрягающие частоты  отдельных звеньев и строят  асимптотические ЛАЧХ и ЛФЧХ  каждого элементарного звена;

3) путем графического суммирования  ЛАЧХ и ЛФЧХ звеньев строят  результирующие ЧХ.

Рассмотрим конкретный пример:  

 

W(p) =

= W1W2W3W4. 

 

Раскладываем данную передаточную функцию на передаточные функции элементарных звеньев:

1) безынерционное звено:  

 

W1 = K1 = 100 => L(w) = 20lg100 = 40; 

 

2) форсирующее звено:  

 

W2 = p + 1;  

 

его параметры: 

 

K2 = 1, T2 = 1,

2 = 1/T2 = 1; 

 

3) интегрирующее звено:  

 

W3 = 1/p;  

 

его ЛАЧХ проходит через точку L = 0 при частоте = 1;

4) апериодическое звено:  

 

W4 = 1/(0.1p + 1);  

 

его параметры: K4 = 1, T4 = 0.1, 4 = 1/T4 = 10.

Порядок построения ЛАЧХ и ЛФЧХ показан на рис.57.

Иногда требуется решить обратную задачу, то есть определить передаточную функцию по известной ЛАЧХ. Процедура определения передаточной функции состоит из следующих этапов:

1) известная ЛАЧХ представляется  в асимптотическом виде, для этого  непрерывная кривая заменяется отрезками прямых либо горизонтальных, либо с наклоном, кратным ±20 дб/дек;

2) асимптотическая ЛАЧХ раскладывается  на ЛАЧХ элементарных звеньев;

3) для каждой из полученных ЛАЧХ  определяются k и 1 = 1/T и записывается передаточная функция типового звена;

4) передаточная функция САУ определяем путем перемножения передаточных функций типовых звеньев.

 

Описанный порядок иллюстрируется на рис.58.

Здесь ЛАЧХ может быть представлена суммой ЛАЧХ четырех типовых звеньев: пропорционального W1 = 100, апериодического W2 = 1/(p + 1), форсирующего W3 = 0.1p + 1 и апериодического W4 = 1/(0.01p + 1).

Таким образом, передаточная функция разомкнутой САУ имеет вид 

 

.  

 

В более сложных случаях наклоны ЛАЧХ на некоторых участках превышают ± 20дб/дек. Тогда помимо параметров K и T приходится определять еще и коэффициенты демпфирования r.

Зная передаточную функцию разомкнутой САУ можно построить ее уравнение динамики  

 

 =>
    =>
  =>
.

Таким образом можно определить уравнение динамики реальных звеньев и всей реальной САУ, если оно теоретически это сделать затруднительно. Для снятия частотных характеристик реальной разомкнутой САУ на ее вход подают гармонический сигнал с изменяемой частотой и определяют изменение амплитуды и фазы выходного сигнала в зависимости от частоты. По полученным характеристикам определяют уравнение динамики, после чего САУ можно исследовать теоретически. 

 

7.2. Законы регулирования

 

 

Пусть задана какая-то САР (рис.59).

Законом регулирования называется математическая зависимость, в соответствии с которой управляющее воздействие на объект вырабатывалось бы безынерционным регулятором.

Простейшим из них является пропорциональный закон регулирования, при котором

u(t) = Ke(t) (рис.60а),  

 

где u(t) - это управляющее воздействие, формируемое регулятором, e(t) - отклонение регулируемой величины от требуемого значения, K - коэффициент пропорциональности регулятора Р.

То есть для создания управляющего воздействия необходимо наличие ошибки регулирования и чтобы величина этой ошибки была пропорциональна возмущающему воздействию f(t). Другими словами САУ в целом должна быть статической.

Такие регуляторы называют П-регуляторами.

Так как при воздействии возмущения на объект управления отклонение регулируемой величины от требуемого значения происходит с конечной скоростью (рис.60б), то в начальный момент на вход регулятора подается очень малая величина e , вызывая при этом слабые управляющие воздействия u. Для повышения быстродействия системы желательно форсировать процесс управления.

Для этого в регулятор вводят звенья, формирующие на выходе сигнал, пропорциональный производной от входной величины, то есть дифференцирующие или форсирующие звенья.

Такой закон регулирования называется пропорционально - дифференциальным:  

 

u(t) = K1e(t) + K2

de(t)/dt.

В соответствии с ним работают ПД-регуляторы.

Чем быстрее нарастает отклонение регулируемой величины от требуемого значения, тем интенсивнее работает ПД-регулятор, что препятствует дальнейшему нарастанию данного отклонения. Кроме того при увеличении отклонения (de(t)/dt > 0) управляющий сигнал u будет больше, чем при уменьшении (de(t)/dt < 0), что также играет положительную роль, снижая колебательность процеса управления.

Добавление в регулятор двух дифференцирующих звеньев позволяет формировать управляющее воздействие по второй производной отклонения e , такой регулятор называется ПДД-регулятором.

Интегральный закон регулирования реализуется И-регулятором, его формулировка:  

 

.  

 

Этот регулятор наращивает управляющее воздействие до тех пор пока управляемая величина отличается от требуемого значения, то есть пока e(t) 0.

И-регулятор обеспечивает астатическое регулирование.

При малых e управляющее воздействие изменяется с малой скоростью, поэтому данный регулятор очень инерционный.

Чтобы увеличить быстродействие обычно последовательно с ним включают усилитель, это дает пропорционально-интегральный закон регулирования (ПИ-регулятор), его формула:

.

Первое слагаемое обеспечивает быстродействие, второе - астатичность, то есть точность регулирования.

Еще большее быстродействие обеспечивается при добавлении слагаемого, пропорционального производной от отклонения управляемой величины de/dt, такой закон регулирования обеспечивается ПИД-регулятором, его формула:  

 

.

 

Лекция 8. Алгебраические критерии устойчивости

8.1. Понятие устойчивости системы

 

  

 

Под устойчивостью системы понимается способность ее возвращаться к состоянию установившегося равновесия после снятия возмущения, нарушившего это равновесие. Неустойчивая система непрерывно удаляется от равновесного состояния или совершает вокруг него колебания с возрастающей амплитудой.

Устойчивость линейной системы определяется не характером возмущения, а структурой самой системы (рис.61). Говорят, что система устойчива "в малом", если определен факт наличия устойчивости, но не определены ее границы. Система устойчива "в большом", когда определены границы устойчивости и то, что реальные отклонения не выходят за эти границы.

В соответствии с классическим методом решение дифференциального уравнения ищется в виде:  

 

y(t) = yвын(t) + yсв(t).  

 

Здесь yсв(t) - общее решение однородного дифференциального уравнения, то есть уравнения с нулевой правой частью:  

 

aoy(n) + a1y(n-1) + ... + a(n-1)y’ + a(n)y = 0.  

 

Физически это означает, что все внешние воздействия сняты и система абсолютно свободна, ее движения определяются лишь собственной структурой. Поэтому решение данного уравнения называется свободной составляющей общего решения. yвын(t) - частное решение неоднородного дифференциального уравнения, под которым понимается уравнение с ненулевой правой частью. Физически это означает, что к системе приложено внешнее воздействие u(t). Поэтому вторая составляющая общего решения называется вынужденный. Она определяет вынужденный установившийся режим работы системы после окончания переходного процесса.

Можно провести аналогию между САУ и пружиной, колебания которой описываются аналогичным дифференциальным уравнением (рис.62). Оттянем пружину, а затем отпустим, предоставив ее самой себе. Пружина будет колебаться в соответствии со свободной составляющей решения уравнения, то есть характер колебаний будет определяться только структурой самой пружины. Если в момент времени t = 0 подвесить к пружине груз, то на свободные колебания наложится внешняя сила Р. После затухания колебаний, описываемых только свободной составляющей общего решения, система перейдет в новый установившийся режим, характеризуемый вынужденной составляющей yвын = y(t ). Если внешнее воздействие само будет изменяться по синусоидальному закону P = Posin( t + ), то после затухания переходного процесса система будет совершать вынужденные колебания с той же частотой, что и вынуждающая сила, то есть yвын = ymaxsin( t + y).

Каждая составляющая общего решения уравнения динамики ищется отдельно. Вынужденная составляющая ищется на основе решения уравнения статики для данной системы для времени t . Свободная составляющая представляет собой сумму из n отдельных составляющих: , где pi корни характеристического уравнения D(p) = a0pn + a1pn-1 + a2pn-2 + ... + an = 0. Корни могут быть либо вещественными pi = ai, либо попарно комплексно сопряженными pi = ai ± j i. Постоянные интегрирования Аi определяются исходя из начальных и конечных условий, подставляя в общее решение значения u, y и их производные в моменты времени t = 0 и t .

Каждому отрицательному вещественному корню соответствует экспоненциально затухающая во времени составляющая yсв(t)i, каждому положительному - экспоненциально расходящаяся, каждому нулевому корню соответствует yсв(t)i = const (рис.63). Пара комплексно сопряженных корней с отрицательной вещественной частью определяет затухающие колебания с частотой i, при положительной вещественной части - расходящиеся колебания, при нулевой - незатухающие (рис.64).

Так как после снятия возмущения yвын(t) = 0, то устойчивость системы определяется только характером свободной составляющей yсв(t). zПоэтому условие устойчивости систем по Ляпунову формулируется так: в устойчивой системе свободная составляющая решения уравнения динамики, записанному в отклонениях, должна стремиться к нулю, то есть затухать.

Исходя из расположения на комплексной плоскости корни с отрицательными вещественными частями называются левыми, с положительными - правыми (рис.65).

Поэтому условие устойчивости линейной САУ можно сформулировать следующим образом: для того, чтобы система была устойчива, необходимо и достаточно, чтобы все корни ее характеристического уравнения были левыми. Если хотя бы один корень правый, то система неустойчива. Если один из корней равен нулю (в системах, где an = 0), а остальные левые, то система находится на границе апериодической устойчивости. Если равны нулю вещественные части одной или нескольких пар комплексно сопряженных корней, то система находится на границе колебательной устойчивости.

Правила, позволяющие судить о знаках корней характеристического уравнения без его решения, называются критериями устойчивости. Их можно разделить на алгебраические (основаны на составлении по данному характеристическому уравнению по определенным правилам алгебраических выражений, по которым можно судить об устойчивости САУ) и частотные (основаны на исследовании частотных характеристик). 

 

8.2. Алгебраические критерии устойчивости

 

 

8.2.1. Необходимое условие устойчивости

 

 

Характеристическое уравнение системы с помощью теоремы Виета может быть записано в виде  

 

D(p) = aopn + a1pn-1 + a2pn-2 + ... + an = ao(p-p1)(p-p2)...(p-pn) = 0,  

 

где p1, p2, ..., pn - корни этого уравнения. Если система устойчива, значит все корни левые, то есть вещественные части всех корней

отрицательны, что можно записать как ai = -|ai| < 0. Подставим их в уравнение: 

 

a0

(p + |a1|)
(p + |a2| - j
2)
(p + |a2| + j
2)
... = 0. 

 

Перемножая комплексно сопряженные выражения, получим:  

 

a0

(p + |a1|)
((p + |a2|)2 + (
2)2)
... = 0.

После раскрытия скобок должно получиться выражение  

 

a0

pn + a1
pn-1 + a2
pn-2 + ... + an = 0.  

 

Так как в скобках нет ни одного отрицательного числа, то ни один из коэффициентов a0,a1,...,an не будет отрицательным. Поэтому необходимым условием устойчивости САУ является положительность всех коэффициентов характеристического уравнения: a0 > 0, a1 > 0, ... , an > 0. В дальнейшем будем рассматривать только уравнения, где a0 > 0. В противном случае уравнение домножается на -1.

Рассмотренное условие является необходиным, но не достаточным условием. Необходимые и достаточные условия дают алгебраические  критерии Рауса и Гурвица. 

 

8.2.1. Критерий Рауса

 

 

Раус предложил критерий устойчивости САУ в виде алгоритма, по которому заполняется специальная таблица с использованием коэффициентов характеристического уравнения:

1) в первой строке записываются  коэффициенты уравнения с четными индексами в порядке их возрастания;

2) во второй строке - с нечетными;

3) остальные элементы таблицы определяется  по формуле: ck,i = ck+ 1,i - 2 - ri ck + 1,i - 1, где ri = c1,i - 2/c1,i - 1, i 3 - номер строки, k - номер столбца.

4) Число строк таблицы Рауса  на единицу больше порядка характеристического уравнения. 

 

Ri

i\k

1

2

3

4

-

1

c11 = a0

c21 = a2

c31 = a4

...

-

2

c12 = a1

c22 = a3

c32 = a5

...

r3 = c11/cc12

3

c13 = c21-r3c22

c23 = c31-r3c32

c33 = c41-r3c42

...

r3 = c11/c12

4

c14 = c22-r3c23

c24 = c32-r4c33

c34 = c42-r4c43

...

...

...

...

...

...

...

Информация о работе Принципы управления