Принципы управления

Автор работы: Пользователь скрыл имя, 09 Октября 2014 в 05:31, курс лекций

Краткое описание

Теория автоматического управления (ТАУ) появилась во второй половине 19 века сначала как теория регулирования. Широкое применение паровых машин вызвало потребность в регуляторах, то есть в специальных устройствах, поддерживающих устойчивый режим работы паровой машины. Это дало начало научным исследованиям в области управления техническими объектами. Оказалось, что результаты и выводы данной теории могут быть применимы к управлению объектами различной природы с различными принципами действия. В настоящее время сфера ее влияния расширилась на анализ динамики таких систем, как экономические, социальные и т.п. Поэтому прежнее название “Теория автоматического регулирования” заменено на более широкое - “Теория автоматического управления”.

Прикрепленные файлы: 1 файл

Курс лекций по ТАУ.doc

— 1.63 Мб (Скачать документ)

 

 

Критерий Рауса: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы коэффициенты первого столбца таблицы Рауса c11, c12, c13,... были положительными. Если это не выполняется, то система неустойчива, а количество правых корней равно числу перемен знака в первом столбце.

Достоинство - критерий прост в использовании независимо от порядка характеристического уравнения. Он удобен для использования на ЭВМ. Его недостаток - малая наглядность, трудно судить о степени устойчивости системы, на сколько далеко отстоит она от границы устойчивости. 

 

8.2.2. Критерий Гурвица

 

 

Гурвиц предложил другой критерий устойчивости. Из коэффициентов характеристического уравнения строится определитель Гурвица по алгоритму:

1) по главной диагонали слева  направо выставляются все коэффициенты  характеристического уравнения  от a1 до an;

2) от каждого элемента диагонали  вверх и вниз достраиваются  столбцы определителя так, чтобы  индексы убывали сверху вниз;

3) на место коэффициентов с индексами меньше нуля или больше n ставятся нули.

Критерий Гурвица: для того, чтобы САУ была устойчива, необходимо и достаточно, чтобы все n диагональных миноров определителя Гурвица были положительны. Эти миноры называются определителями Гурвица.

Рассмотрим примеры применения критерия Гурвица:

1) n = 1 => уравнение динамики: a0p + a1 = 0. Определитель Гурвица: = 1 = a1 > 0 при a0 > 0, то есть условиие устойчивости: a0 > 0, a1 > 0;

2) n = 2 => уравнение динамики: a0p2 + a1p + a2 = 0. Определители Гурвица: 1 = a1 > 0, D2 = a1a2 - a0a3 = a1a2 > 0, так как a3 = 0, то есть условие устойчивости: a0 > 0, a1 > 0, a2 > 0;

3) n = 3 => уравнение динамики: a0p3 + a1p2 + a2p + a3 = 0. Определители Гурвица: 1 = a1 > 0, 2 = a1a2 - a0a3 > 0, 3 = a3 2 > 0, условие устойчивости: a0 > 0, a1 > 0, a2 > 0, a3 > 0, a1a2 - a0a3 > 0;

Таким образом при n 2 положительность коэффициентов характеристического  уравнения является необходимым и достаточным условием устойчивости САУ. При n > 2 появляются дополнительные условия.

Критерий Гурвица применяют при n 4. При больших порядках возрастает число определителей и процесс становится трудоемким. Имеется ряд модификаций данного критерия, расширяющие его возможности.

Недостаток критерия Гурвица - малая наглядность. Достоинство - удобен для реализации на ЭВМ. Его часто используют  для  определения  влияния одного из параметров САУ на ее устойчивость. Так равенство нулю главного определителя n = an n-1 = 0 говорит о том, что система находится на границе устойчивости. При этом либо an = 0 - при выполнении остальных условий система находится на границе апериодической устойчивости, либо предпоследний минор n-1 = 0 - при положительности всех остальных миноров система находится на границе колебательной устойчивости. Параметры САУ определяют значения коэффициентов уравнения динамики, следовательно изменение любого параметра Ki влияет на значение определителя n-1. Исследуя это влияние можно найти, при каком значении Ki определитель n-1 станет равен нулю, а потом - отрицательным (рис.67). Это и будет предельное значение исследуемого параметра, после которого система становится неустойчивой.

 

Лекция 9. Частотные критерии устойчивости

Это графоаналитические методы, позволяющие по виду частотных характеристик САУ судить об их устойчивости. Их общее достоинство в простой геометрической интерпретации, наглядности и в отсутствии ограничений на порядок дифференциального уравнения. 

 

9.1. Принцип аргумента

 

 

Запишем характеристический полином САУ в виде  

 

D(p) = a0

(p - p1)
(p - p2)
...
(p - pn) = 0.  

 

 

 

 

 

 

 

Его корни

pi =

i + j
i = |pi|ejarg(pi),  

 

где arg(pi) = arctg( i/ai) + k ,

.  

 

Каждый корень можно изобразить вектором на комплексной плоскости (рис.68а), тогда разность p - pi изобразится разностью векторов (рис.68б), где p - любое число.

Еcли менять значение p произвольным образом, то конец вектора p - pi будет перемещаться по комплексно плоскости, а его начало будет оставаться неподвижным, так как pi - это конкретное неизменное значение.

В частном случае, если на вход системы подавать гармонические колебания с различной частотой , то p = j , а характеристический полином принимает вид:

D(j

) = a0
(j
- p1)
(j
- p2)
...
(j
- pn).  

 

При этом концы векторов j - pi будут находиться на мнимой оси (рис.68в). Если менять от - до + , то каждый вектор j - pi будет поворачиваться относительно своего начала pi на угол +p для левых и - p для правых корней (рис.68г).

Характеристический полином можно представить в виде 

 

D(j

) = |D(j
)|ejarg(D(j
)),

где    |D(j )| = a0 |j - p1| |j - p2|...|j - pn|,

arg(D(j )) = arg(j - p1) + arg(j - p2) + .. + arg(j - pn). 

 

Пусть из n корней m - правые, а n - m - левые, тогда угол поворота вектора D(j ) при изменении от - до + равен 

 

= (n - m)
- m
,  

 

или при изменении от 0 до + получаем

= (n - 2m)
(
/2). 

 

Отсюда вытекает правило: изменение аргумента вектора b при изменении частоты от - до + равно разности между числом левых и правых корней уравнения D(p) = 0, умноженному на , а при изменении частоты от 0 до + эта разность умножается на /2.

Это и есть принцип аргумента. Он положен в основе всех частотных критериев устойчивости. Мы рассмотрим два наиболее распространенных критерия: критерий Михайлова и критерий Найквиста. 

 

9.2. Критерий устойчивости Михайлова

 

 

Так как для устойчивой САУ число правых корней m = 0, то угол поворота вектора D(j ) составит  

 

= n
/2.  

 

То есть САУ будет устойчива, если вектор D(j ) при изменении частоты от 0 до + повернется на угол n /2.

При этом конец вектора опишет кривую, называемую годографом Михайлова. Она начинается на положительной полуоси, так как D(0) = an, и последовательно проходит против часовой стрелки n квадрантов комплексной плоскости, уход в бесконечность в n - ом квадранте  (рис.69а).

Если это правило нарушается (например, число проходимых кривой квадрантов не равно n, или нарушается последовательность прохождения квадрантов  (рис.69б)), то такая САУ неустойчива - это и есть необходимое и достаточное условие критерия Михайлова.

Достоинства. Этот критерий удобен своей наглядностью. Так, если кривая проходит вблизи начала координат, то САУ находится вблизи границы устойчивости и наоборот. Этим критерием удобно пользоваться, если известно уравнение замкнутой САУ.

Для облегчения построения годографа Михайлова выражение для D(j ) представляют суммой вещественной и мнимой составляющих: 

 

 

 D(j ) = a0(j - p1)(j - p2)...(j - pn) = a0(j )n + a1(j )n - 1 + ... + an = ReD(j ) + jImD(j ),

где

ReD(j ) = an - an - 2 2 + an- 4 4 - ...,

ImD(j ) = an - 1 - an - 3 3 + an- 5 5 - ....  

 

Меняя от 0 до по этим формулам находят координаты точек годографа, которые соединяют плавной линией. 

 

9.3. Критерий устойчивости Найквиста

Этот критерий позволяет судить об устойчивости замкнутой САУ по виду АФЧХ разомкнутой САУ (рис.70). Исследование разомкнутой САУ проще, чем замкнутой. Его можно производить экспериментально, поэтому часто оказывается, что АФЧХ разомкнутой САУ мы имеем или можем получить.

Передаточная функция разомкнутой САУ:  

 

Wp(p) = Wp(p)/Dp(p) = > уравнение динамики: y(t) =

e(t),  

 

или

Dp(p)

y(t) = Kp(p)
e(t).  

 

Здесь Dp(p) - характеристический полином разомкнутой САУ. То есть по виду корней уравнения Dp(p) = 0 можно судить об устойчивости разомкнутой САУ. Но это пока ничего не говорит об устойчивости замкнутой САУ.

Для того, чтобы получить уравнение динамики замкнутой САУ при свободном движении, считаем, что внешнее воздействие u = 0, тогда на вход первого звена САУ подается сигнал  

 

e(t) = u(t) - y(t) = - y(t).  

 

То есть 

 

Dp(p)

y(t) = Kp(p)
( - y(t)),  

 

следовательно уравнение замкнутой САУ:  

 

(Dp(p) + Kp(p))

y(t) = 0.

Таким образом, характеристическое уравнение замкнутой САУ: 

 

Dз(p) = Dp(p) + Kp(p) = 0.  

 

По виду его корней уже можно судить об устойчивости замкнутой САУ.

Воспользуемся вспомогательной функцией: 

 

F(j

) = 1 + Wр(j
) =

 

По сути дела она представляет собой АФЧХ разомкнутой САУ, сдвинутую на единицу вправо. Степени полиномов Dз(j ) и Dp(j ) равны n. Эти полиномы имеют свои корни pзi и ppi, то есть можно записать:  

 

F(jw) =

 

Каждую разность в скобках можно представить вектором на комплексной плоскости, конец которого скользит по мнимой оси (рис.63в). При изменении от - до + каждый из векторов j - pi будет поворачиваться на угол +p, если корень левый и -p, если корень правый.

Пусть полином Dз(jw) имеет m правых корней и n - m левых, а полином Dp(j ) имеет g правых корней и n - g левых. Тогда суммарный угол поворота вектора функции F(j ) при изменении частоты от - до + : 

 

p[(n - m) - m)] - p[(n - g) - g] = 2p(g - m). 

 

Если замкнутая САУ устойчива, то m = 0, тогда суммарный поворот вектора F(j ) при изменении от - до + должен быть равен 2 g, а при изменении от 0 до + он составит 2 g/2.

Отсюда можно сформулировать критерий устойчивости Найквиста: если разомкнутая САУ неустойчива и имеет g правых корней, то для того, чтобы замкнутая САУ была устойчива необходимо и достаточно, чтобы вектор F(j ) при изменении от 0 до + охватывал начало координат в положительном направлении g/2 раз, то есть АФЧХ разомкнутой САУ должна охватвать g/2 раз точку ( - 1, j0).

На рис.71а приведены АФЧХ разомкнутых САУ, устойчивых в замкнутом состоянии, на рис.71б - замкнутая САУ неустойчива.

На рис.71в и 71г  показаны АФЧХ разомкнутых астатических САУ, соответственно устойчивых и неустойчивых в замкнутом состоянии. Их особенность в том, что АФЧХ при 0 уходит в бесконечность. 

 

В этом случае при использовании критерия Найквиста ее мысленно замыкают на вещественную ось по дуге окружности бесконечно большого радиуса.

Достоинство. Критерий Найквиста очень нагляден. Он позволяет не только выявить, устойчива ли САУ, но и, в случае, если она неустойчива, наметить меры по достижению устойчивости.

 

Лекция 10.D-разбиение. Запас устойчивости

10.1. Понятие структурной устойчивости. АФЧХ астатических САУ

 

 

САУ может быть неустойчивой по двум причинам: неподходящий состав динамических звеньев и неподходящие значения параметров звеньев.

САУ, неустойчивые по первой причине называются структурно неустойчивыми. Это означает, что изменением параметров САУ нельзя добиться ее устойчивости, нужно менять ее структуру.

Например, если САУ состоит из любого количества инерционных и колебательных звеньев, она имеет вид, показанный на рис.72 . При увеличении коэффициента усиления САУ K каждая точка ее АФЧХ удаляется от начала координат, пока при некотором значении Kкрит АФЧХ не пересечет точку (-1, j0). При дальнейшем увеличении K, САУ будет неустойчива. И наоборот, при уменьшении K такую САУ в принципе возможно сделать устойчивой, поэтому ее называют структурно устойчивой.

Если САУ астатическая, то при ее размыкании характеристическое уравнение можно представить в виде: p D1p(p) = 0, где n - порядок астатизма, равный количеству последовательно включенных интеграторов. Это уравнение имеет нулевые корни, поэтому при 0, АФЧХ стремится к (рис.71в и 71г). Например, пусть Wр(p) = , здесь = 1, тогда АФЧХ разомкнутой САУ: 

 

 

 W(j ) = = P( ) + jQ( ). 

 

Так как порядок знаменателя больше порядка числителя, то при 0 имеем P( ) - , Q( ) -j .

Подобная АФЧХ представлена на рис.73.

Так как АФЧХ терпит разрыв, трудно сказать, охватывает ли она точку (-1,j0). В этом случае пользуются следующим приемом: если АФЧХ терпит разрыв, уходя в бесконечность при 0, ее дополняют мысленно полуокружностью бесконечного радиуса, начинающейся на положительной вещественной полуоси и продолжающейся до АФЧХ в отрицательном направлении. После этого можно применить критерий Найквиста. Как видно из рисунка, САУ, имеющая одно интегрирующее звено, является структурно устойчивой.

Если САУ имеет два интегрирующих звена (порядок астатизма = 2), ее АФЧХ уходит в бесконечность во втором квадранте (рис.74).

Например, пусть Wр(p) = , тогда АФЧХ САУ: 

 

W(j

) =
= P(
) + jQ(
). 

 

При 0 имеем P( ) - , Q( ) + j . Такая САУ не будет устойчива ни при каких значениях параметров, то есть она структурно неустойчива.

Структурно неустойчивую САУ можно сделать устойчивой, включив в нее корректирующие звенья (например, дифференцирующие или форсирующие) или изменив структуру САУ, например, с помощью местных обратных связей. 

 

10.2. Понятие запаса устойчивости

 

 

В условиях эксплуатации параметры системы по тем или иным причинам могут меняться в определенных пределах (старение, температурные колебания и т.п.). Эти колебания параметров могут привести к потере устойчивости системы, если она работает вблизи границы устойчивости. Поэтому стремятся спроектировать САУ так, чтобы она работала вдали от границы устойчивости. Степень этого удаления называют запасом устойчивости.

Согласно критерия Найквиста, чем дальше АФЧХ от критической точки (-1, j0), тем больше запас устойчивости. Различают запасы устойчивости по модулю и по фазе.

Запас устойчивости по модулю характеризует удаление годографа АФЧХ разомкнутой САУ от критической точки в направлении вещественной оси и определяется расстоянием h от критической точки до точки пересечения годографом оси абсцисс (рис.75).

Запас устойчивости по фазе характеризует удаление годографа от критической точки по дуге окружности единичного радиуса и определяется углом между отрицательным направлением вещественной полуоси и лучом, проведенным из начала координат в точку пересечения годографа с единичной окружностью.

Как уже отмечалось, с ростом коэффициента передачи разомкнутой САУ растет модуль каждой точки АФЧХ и при некотором значении K = Kкр АФЧХ пройдет через критическую точку (рис.76) и попадет на границу устойчивости, а при K > Kкр замкнутая САУ станет неустойчива. Однако в случае “клювообразных” АФЧХ (получаются из-за наличия внутренних обратных связей) не только увеличение, но и уменьшение K может привести к потере устойчивости замкнутых САУ (рис.77). В этом случае запас устойчивости определяется двумя отрезками h1 и h2, заключенными между критической точкой и АФЧХ.

Информация о работе Принципы управления