Влияние минеральных веществ на рост и развитие растений

Автор работы: Пользователь скрыл имя, 05 Декабря 2012 в 14:53, курсовая работа

Краткое описание

Минеральное питание растений – совокупность процессов поглощения, передвижения и усвоения растениями химических элементов, получаемых из почвы в форме ионов минеральных солей.
Каждый химический элемент играет в жизни растения особую роль.
Азот является составной частью аминокислот – строительных блоков, из которых состоят белки. Азот входит также во множество других соединений: в пурины, алкалоиды, ферменты, регуляторы роста, хлорофилл и клеточные мембраны

Содержание

ВВЕДЕНИЕ 3
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ 5
1.1 Содержание минеральных элементов в растениях 5
1.2 Азот 6
1.3 Фосфор 9
1.4 Сера 12
1.5 Калий 13
1.6 Кальций 16
1.7 Магний 17
ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ 20
2.1 Методы определения минеральных веществ 20
2.2 Микрохимический анализ золы 21
ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ АНАЛИЗ 24
3.1 Симптомы недостаточности минеральных веществ 24
3.2 Физиологическое действие недостатка минеральных веществ 26
3.3 Избыток минеральных веществ 27
3.4 Недостаток азота 29
3.5 Недостаток фосфора 29
3.6 Недостаток серы 30
3.7 Недостаток калия 30
3.8 Недостаток кальция 31
3.9 Недостаток магния 31
ЗАКЛЮЧЕНИЕ 33
БИБЛИОГРАФИЧЕСКИЙ СПИСОК 34

Прикрепленные файлы: 1 файл

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ.docx

— 79.23 Кб (Скачать документ)

Важная роль принадлежит  ионам Са2+ в стабилизации мембран. Взаимодействуя с отрицательно заряженными группами фосфолипидов, он стабилизирует мембрану и снижает ее пассивную проницаемость. При недостатке кальция повышается проницаемость мембран, появляются их разрывы и фрагментация, нарушаются процессы мембранного транспорта.

Важно отметить, что почти  вся катионообменная емкость поверхности корня занята кальцием и частично Н+. Это указывает на участие кальция в первичных механизмах поступления ионов в клетки корня. Ограничивая поступление других ионов в растения, кальций способствует устранению токсичности избыточных концентраций ионов аммония, алюминия, марганца, железа, повышает устойчивость растений к засолению, снижает кислотность почвы. Именно кальций чаще всего выступает в роли балансного иона при создании физиологической уравновешенности ионного состава среды, так как его содержание в почве достаточно велико.

Большинство типов почв богато кальцием, и резко выраженное кальциевое голодание встречается редко, например при сильной кислотности или засоленности почв, на торфяниках, при нарушении развития корневой системы, при неблагоприятных погодных условиях.

 

1.7 Магний

По содержанию в растениях  магний занимает четвертое место  после калия, азота и кальция. У высших растений среднее его содержание в расчете на сухую массу 0,02 — 3,1%, у водорослей 3,0 — 3,5%. Особенно много его в растениях короткого дня — кукурузе, просе, сорго, конопле, а также в картофеле, свекле, табаке и бобовых. 1 кг свежих листьев содержит 300 — 800 мг магния, из них 30 — 80 мг (т. е. 1/10 часть) входит в состав хлорофилла. Особенно много магния в молодых клетках и растущих тканях, а также в генеративных органах и запасающих тканях. В зерновках магний накапливается в зародыше, где его уровень в несколько раз превышает содержание в эндосперме и кожуре (для кукурузы соответственно 1,6, 0,04 и 0,19 % на сухую массу).

Накоплению магния в молодых  тканях способствует его сравнительно высокая подвижность в растениях, что обусловливает его вторичное  использование (реутилизацию) из стареющих  тканей. Однако степень реутилизации магния значительно ниже, чем азота, фосфора и калия. Легкая подвижность  магния объясняется тем, что около 70% этого катиона в растении связано  с анионами органических и неорганических кислот. Перемещение магния осуществляется как по ксилеме, так и по флоэме. Некоторая часть магния образует нерастворимые соединения, не способные  к перемещению по растению (оксалат, пектат), другая его часть связывается высокомолекулярными соединениями. В семенах (зародыше, оболочке) большая часть магния находится в составе фитина.

И, наконец, около 10—12% магния входит в состав хлорофилла. Эта  последняя функция магния уникальна: ни один другой элемент не может  заменить его в хлорофилле. Магний необходим для синтеза протопорфирина IX — непосредственного предшественника хлорофиллов.

На свету ионы магния освобождаются  из полости тилакоидов в строму хлоропласта. Увеличение концентрации магния в строме активирует РДФ-карбоксилазу и другие ферменты. Предполагается, что возрастание концентрации Mg2+ (до 5 ммоль/л) в строме приводит к увеличению сродства РДФ-карбоксилазы к СO2 и активации восстановления СO2. Магний может непосредственно влиять на конформацию фермента, а также обеспечивать оптимальные условия для его работы, влияя на рН цитоплазмы как противоион протонов. Аналогично могут действовать и ионы калия. Магний активирует ряд реакций переноса электронов при фотофосфорилировании: восстановление NADP+, скорость реакции Хилла, он необходим при передаче электронов от ФС II к ФС I.

Действие магния на другие участки обмена веществ чаще всего  связано с его способностью регулировать работу ферментов и значение его  для ряда ферментов уникально. Только марганец может заменить магний в  некоторых процессах. Однако в большинстве случаев активация ферментов магнием (в оптимальной концентрации) выше, чем марганцем.

Магний необходим для  многих ферментов гликолиза и  цикла Кребса. В митохондриях при  его недостатке наблюдается уменьшение количества, нарушение формы и в конечном счете исчезновение крист. Для девяти из двенадцати реакций гликолиза требуется участие металлов-активаторов и шесть из них активируются магнием.

Магний усиливает синтез эфирных масел, каучука, витаминов А и С. Предполагается, что, образуя комплексное соединение с аскорбиновой кислотой, он задерживает ее окисление. Mg2+ необходим для формирования рибосом и полисом, для активации аминокислот и синтеза белков и используется для всех процессов в концентрации не менее 0,5-ммоль/л. Он активирует ДНК- и РНК-полимеразы, участвует в формировании определенной пространственной структуры нуклеиновых кислот.

При повышении степени  обеспеченности магнием в растениях  возрастает содержание органических и  неорганических форм фосфорных соединений. Этот эффект, вероятно, связан с ролью  магния в активации ферментов, участвующих  в метаболизме фосфора.

Недостаток в магнии растения испытывают в основном на песчаных почвах. Бедны магнием и кальцием подзолистые почвы, богаты — сероземы; черноземы занимают промежуточное  положение. Водорастворимого и обменного  магния в почве 3—10%. В почвенном  поглощающем комплексе больше всего  содержится ионов кальция, магний стоит  на втором месте.    Недостаток в магнии растения испытывают в тех  случаях, когда его содержится менее 2 мг на 100 г почвы. При снижении рН почвенного раствора магний поступает  в растения в меньших количествах.

 

 

 

 

ГЛАВА 2. МАТЕРИАЛЫ  И МЕТОДЫ ИССЛЕДОВАНИЙ

 

2.1 Методы определения  минеральных веществ

Определение содержания любого химического элемента в растении включает в качестве обязательной процедуры, предшествующей самому определению, стадию разложения (дигестии) образца.

В практике биохимического анализа используют в основном два  метода — сухое и мокрое озоление. В обоих случаях процедура обеспечивает минерализацию всех элементов, т. е. перевод их в форму, растворимую в том или другом неорганическом растворителе.

Мокрое озоление — основной способ разложения органических соединений азота и фосфора, и в ряде случаев оно более надежно при определении многих других элементов. При определении бора может быть использовано только сухое озоление, так как большая часть соединений бора улетучивается с парами воды и кислоты.

Метод сухого озоления применим для анализа содержания в би-ологическом материале почти всех макро- и микроэлементов. Обычно сухое озоление растительных проб проводят в электрической муфельной печи в фарфоровых, кварцевых или металлических тиглях (или чашках) при температуре, не превышающей 450— 500° С. Лучше всего тигли из кварца, однако обычно применяют тигли из тугоплавкого стекла или фарфора. Для некоторых специальных исследований могут потребоваться платиновые тигли. Низкая температура во время сжигания и правильный выбор материала тигля позволяют избежать потерь от улетучивания и потерь вследствие образования плохо растворимых в соляной кислоте окислов определяемого элемента. Окислы могут возникать при реакции с материалом, из которого изготовлены тигли.

 

 

 

2.2 Микрохимический  анализ золы

 

Материалы и оборудование: зола, полученная при сжигании листьев, семян, древесины; 10% растворы НCl и NH3, 1% растворы следующих солей в капельнице: Na2НСO3, NaHC4H4O6, K4[Fe(CN)6], (NH4)2MoO4 в 1% HNO3, 1% раствор H2SO4; пробирки, стеклянные воронки диаметром 4-5 см, шпатели металлические или глазные лопаточки, предметные стекла, стеклянные палочки, салфетки или кусочки фильтровальной бумаги, бумажные фильтры, промывалки или колбочки с дистиллированной водой, стаканчики для смывной воды.

 

Краткие сведения:

При сжигании ткани органогенные элементы (С; Н; О; N) улетучиваются в  виде газообразных соединений и остается несгораемая часть – зола. Содержание ее в разных органах различно: в листе – до 10—15%, в семенах – около 3%, в древесине – около 1%. Больше всего золы в живых, активно функционирующих тканях, например в мезофилле листа. В его клетках имеется хлорофилл и множество ферментов, в составкоторых входят такие элементы, как магний, железо, медь и др. В связи с высокой метаболической  активностью живых тканей в них обнаруживается также значительное количество калия, фосфора и других элементов. Содержание золы зависит и от состава почвы, на которой произрастает растение, и от его возраста и биологической природы. Органы растений отличаются не только по количественному, но и по качественному составу золы.

Микрохимический метод позволяет  обнаружить в золе растений целый  ряд элементов. В основе метода лежит  способность некоторых реактивов  при взаимодействии с зольными элементами давать соединения, отличающиеся специфической  окраской или формой кристаллов.

 

 

Ход работы

Порцию высушенного материала (древесные щепки, листья и размельченные  семена) поместить в тигель, добавив  немного спирта и поджечь. Процедуру  повторить 2-3 раза. Затем тигель перенести  на электроплиту и прокаливать, пока обугленный материал не приобретет пепельно-серый  цвет. Остатки угля надо выжечь, поместив тигель в муфельную печь на 20 мин.

Для обнаружения Са, Mg, Р и Fe необходимо внести в пробирку стеклянной глазной лопаточкой порцию золы, залить ее 4 мл 10% НСl и несколько раз встряхнуть для лучшего растворения. Для выявления калия такое же количество золы надо растворить в 4 мл дистиллированной воды и профильтровать в чистую пробирку через маленький бумажный фильтр. Затем стеклянной палочкой на чистое предметное стекло нанести небольшую каплю зольной вытяжки, рядом, на расстоянии 10 мм, - каплю реактива и палочкой соединить две капли перемычкой. (Каждый реактив наносится отдельной пипеткой). В месте соприкосновения растворов произойдет кристаллизация продуктов реакции (смешение двух капель нежелательно, так как вследствие быстрой кристаллизации образуются мелкие нетипичные кристаллы; кроме того, при высыхании капли могут образовываться кристаллы исходных солей).

После этого капли оставшихся растворов убрать со стекла кусочками  фильтровальной бумаги и рассмотреть  кристаллы под микроскопом без  покровного стекла. По проведении каждой реакции стеклянную палочку надо прополаскивать водой и вытирать насухо фильтровальной бумагой.

Для обнаружения калия  используется 1% кислый виннокислый  натрий. В результате реакции с  зольной вытяжкой образуются кристаллы  кислого виннокислого калия КНC4H4O6, имеющие вид крупных призм. Вытяжку калия в воде необходимо предварительно нейтрализовать, так как в кислой и щелочной среде продукт реакции растворим. Реакция идет по уравнению:

NaHC4 H4O6 + К+ → КНС4 Н4O6↓ + Na+.

 

 

Обнаружение кальция проводится 1% серной кислотой, реакция идет по уравнению:

CaCl2 + H2SO4 → CaSO4↓ + 2HCl.

В результате образуется гипс в виде отдельных или собранных  в пучки кристаллов игольчатой формы.

При обнаружении магния к  капле зольной вытяжки вначале  добавляют каплю 10% раствора аммиака  и соединяют ее мостиком с каплей 1% раствора фосфорнокислого натрия. Реакция идет по уравнению:

MgCl2 + NH3 + Na2HPO4 → NH4MgPO4↓ + 2NaCl.

Образуется фосфорно-аммиачномагнезиальная соль в виде плоских бесцветных кристаллов в форме прямоугольников, крыльев, крышечек.

Обнаружение фосфора проводится с помощью 1% молибдата аммония в азотной кислоте. Реакция идет согласно уравнению:

H3PO4 + 12(NH4)2MoO4 + 21HNO3 → (NH4)3PO4 * 12MoO3↓ + 21NH4NO3  + 12H2O.

Образуется фосфорно-молибденовый аммиак в виде мелких глыбок желто-зеленого цвета.

Для обнаружения железа в  две пробирки наливают равное количество зольной вытяжки из разных органов (1-2 мл), добавляют равное количество 1% желтой кровяной соли до появления  синего окрашивания. Образуется берлинская лазурь:

4FeCl3 + 3K4[Fe(CN)6] → Fe4[Fe(CN)6]3 + 12KCl.

 

 

 

 

 

 

 

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ АНАЛИЗ

 

3.1 Симптомы недостаточности  минеральных веществ

Недостаток минеральных  веществ вызывает изменения биохимических  и физиологических процессов, в  результате чего часто наблюдаются  морфологические изменения, или  видимые симптомы.

 Иногда вследствие  дефицита рост подавляется до  появления других симптомов.

Видимые симптомы дефицита. Наиболее существенный результат недостатка минеральных веществ – снижение роста. Однако наиболее заметный эффект – это пожелтение листьев, вызванное уменьшением биосинтеза хлорофилла. Листья, по-видимому, особенно чувствительны к дефициту. При недостатке минеральных веществ у них уменьшаются размеры, изменяется форма или структура, бледнеет окраска, а иногда даже образуются мертвые участки на кончиках, краях или между главными жилками. В некоторых случаях листья собираются в пучки или розетки, а сосновые иглы иногда не могут разделиться и образуется «слившаяся хвоя». Общий признак определенного типа недостаточности минеральных веществ в травянистых растениях – подавление роста стебля и снижение роста листовых пластинок, что приводит к образованию розеток небольших листьев, часто с сетью хлоротичных участков. Видимые симптомы дефицита различных элементов настолько характерны, что опытные наблюдатели могут идентифицировать дефицит по внешнему виду листьев.

Иногда при недостатке минеральных веществ деревья  образуют избыточные количества камеди. Это явление получило название омоза. Выделение смолы вокруг почек характерно для страдающих от недостатка цинка деревьев сосны замечательной в Австралии. Камедь обнаруживается также на коре плодовых деревьев, страдающих от суховершинности, вызванной недостатком меди. Значительный дефицит часто вызывает гибель листьев, побегов и других частей, т. е. развиваются симптомы, описанные как суховершинность. Отмирание побегов, вызванное недостатком меди, наблюдалось у многих лесных и плодовых деревьев. При отмирании верхушечных побегов яблони, страдающие от дефицита меди, приобретают кустообразный, чахлый вид. Недостаток бора вызывает засыхание верхушечных точек роста и в конце концов гибель камбия у цитрусовых и у сосен, отмирание флоэмы и физиологический распад плодов у других видов. Недостаток одного элемента иногда способствует появлению нескольких различных симптомов, например дефицит бора у яблонь вызывает деформацию и хрупкость листьев, некроз флоэмы, повреждения коры и плодов.

Информация о работе Влияние минеральных веществ на рост и развитие растений