Технологии производства формовых резинотехнических изделий

Автор работы: Пользователь скрыл имя, 16 Апреля 2014 в 03:24, дипломная работа

Краткое описание

Оборудование и технологии, применяемые на большинстве росийских предприятий давно уже устарели. Ввиду данной причины, производительность низкая, велика доля брака, осуществляются выбросы вредных веществ в атмосферу, себестоимость продукции высока и т.д.
ООО “Автокомплект и К” одно из нескольких балаковских предприятий, основной деятельностью которого является производство резинотехнических изделий. Анализ технологии, внедренной на данном предприятии показал, что ООО “Автокомплект и К” не осуществляют очистки отходящих газов, которые содержат, как результат побочных реакций, всевозможные вредные вещества, такие как: стирол, хлоропрен, метилэтилкетон, предельные углеводороды и др. Помимо газообразных продуктов, выбросы в атмосферу содержат взвешенную пыль серы и технического углерода. Данные вещества вызывают не только аллергические реакции, но и поражают центральную нервную систему работников предприятия, а также негативно воздействуют на окружающую природную среду.
Целью дипломного проекта является снижение экологической напряженности предприятия ООО “Автокомплект и К”.

Содержание

Введение
1 Технологический раздел
1.1 Информационный анализ с целью выбора технического решения
1.1.2 Добавки резиновых смесей
1.1.3 Оборудование для производства РТИ
1.2 Патентные исследования
1.3 Характеристика исходного сырья, вспомогательных материалов и
готовой продукции
1.4 Описание технологического процесса
1.5 Основные параметры технологического процесса
1.6 Техническая характеристика основного технологического
оборудования
1.7 Технологические расчеты
1.7.1 Материальные расчеты
1.7.2 Расчет основного технологического оборудования
1.7.3 Теплоэнергетические расчеты
1.7.4 Транспортные расчеты
2. Безопасность проекта
3. Экологическая экспертиза проекта
4. Автоматика
5. Организационно-экономический раздел
Заключение
Список использованной литературы

Прикрепленные файлы: 1 файл

Технологии производства формовых резинотехнических изделий.docx

— 93.61 Кб (Скачать документ)

ОАО «Химпром» для уплотнения гранул тиазола 2МБС принят метод шприцевания пасты через отверстия Ш 2,5 мм. В качестве пластификатора применяли минеральное масло. Вводили его в суспензию промышленного производства в расчете на сухой продукт. Уплотняемость изучали в зависимости от влажности пасты и количества вводимого пластификатора. Результаты экспериментальных данных приведены в таблице 1.1.

Таблица 1.1 Экспериментальные данные по уплотнению гранул тиазола 2МБС

№ п/п Влажность пасты, % Добавка плас-тификатора, % Диаметр отверстия, мм Насыпная плотность, кг/м3

однократ. двукратн.

уплотнен. уплотнен.

Тиазол 2МБС

1. 65 - 2,5 150-160 -

2. 55 - 2,5 160-180 -

3. 50 - 2,5 не уплот-няются -

4. 50 2,0 2,5 200-250 310-350

5. 50 4,0 2,5 250-300 350-404

6. 50 10,0 2,5  350-405

Дифенилгуанидин

7. 47,5 2 5,0 290-350 -

8. 40 2 5,0 300-425 -

 

Из данных таблицы видно, что для получения гранул с насыпной плотностью на уровне 400 кг/м3 необходимо иметь влажность пасты 40% масс. пластификатора к массе сухого продукта. Известно, что пасты с низкой пластичностью в гранулы формируются двукратно. В указанных пределах значений насыпной плотности большие значения соответствуют уплотненному продукту по ГОСТ 10898-74. При таком содержании пластификатора тиазола 2МБС отвечает требованиям ТУ 6-14-851-86.

Товарный гранулированный дифенилгуанидаин получают из пасты влажностью 45-50% масс. и содержит 2% пластификатора; после однократного шприцевания через фильеру с отверстием Ш 5 мм и сушки до остаточной влажности не более 3% имеет насыпную плотность 340 кг/м3. Снижение влажности до 40% позволяет уплотнить гранулы дифенилгуанидина до насыпной плотности 425 кг/м3. Такая высокая насыпная плотность гранул при однократном формовании объясняется еще и более меньшим отношением длины гранул к диаметру, чем у тиазола 2МБС (2,2 против 2,5). Порошковый и гранулированный дифенилгуанидин полностью отвечают ТУ 2491-001-43220031-2001.

Таким образом, введение пластификаторов в процессе производства позволяет подавить пылящую способность, уменьшить пожаро- и взрывоопасность процессов сушки ускорителей вулканизации резин тиазола и дифенилгуанидина, рационально использовать тару и транспортные средства [2].

3. Противостарители (атиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они задерживают оксиление каучука в результате окисления их самих или за счет разрушения образующихся перекисей каучука; физические противостарители образуют поверхностные защитные пленки, они применяются реже. В резиновой смеси 7-57-9003 используется противостаритель химического действия – диафен ФП.

4. Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту (в данном случае используется именно она), битумы, дибутилфталат, растительные масла. Количество мягчителей составляет 8-30% массы каучука.

 Существует аналог пластификатора  дубитилфталата, получаемый реакцией  этерификации бутилового спирта  со фталевым ангидридом в присутствии  катализатора – тетрабутоксититана  при атмосферном давлении. Оптимальные  параметры синтеза дибутилфталата  – мольные соотношения бутанол:фталевый  ангидрид и оптимальная температура реакции этерификации.

Недостатком мономолекулярного дибутилфталата является недостаточно эффективное воздействие на композиционно неоднородные каучуки.

Новый улучшенный пластификатор для резин на основе полярных каучуков получают воздействием спирта, фталевого ангидрида и катализатора тетрабутоксититана, отличным является то, что в качестве спирта используют отходы спиртового производства – смесь спиртов этилового, изобутилового и изоамилового, полученную в результате предварительной перегонки высокомолекулярных отходов производства этилового спирта при следующем соотношении компонентов, масс.%:

• смесь спиртов этилового, изобутилового, изоамилового – 65,79;

• фталевый ангидрид – 32,89;

• тетрабутоксититан – 1,32.

Технический результат заключается в том, что полученный пластификатор обеспечивает пластификацию полярных полимеров типа бутадиен-нитрильных, хлоропреновых, акрилатных, карбоксилатных, фторкаучуков и др., в отличие от широко известного дибутилфталата, и заключается в снижении вымывания пластификатора из вулканизатов, а также в улучшении экологии окружающей среды и расширении ассортимента пластификаторов.

Способ реализуется следующим образом.

Пластификатор готовят из смеси этилового, изобутилового и изоамилового, полученных в результате предварительной перегонки высокомолекулярного отхода производства спирта до 1000С, и фталевого ангидрида при мольном соотношении компонентов 1,5:1 (что соответствует 65,79 и 32,89 масс.%). В качестве катализатора этерификации применяли тетрабутоксититан в количестве 2% от массы фталевого ангидрида. В реактор, снабженный мешалкой и термометром, загружали фталевый ангидрид, смесь спиртов и катализатор. Реактор присоединяли к колонке, закрепляли шлифовые соединения, подавали воду в обратный холодильник и включали обогрев реакционной массы. Температуру нагрева регулировали таким образом, чтобы реакционная масса кипела и количество конденсата, стекающего из обратного холодильника в сепаратор, сотавляло 1-2 капли в секунду. За начало опыта принимали момент закипания реакционной массы. Процесс проводили при температуре 1750С в течение 5-6 ч.

Вода, образовывающаяся в процессе этерификации, отгонялась в виде азеотропной смеси с н-бутиловым спиртом и накапливалась в нижней части сепаратора.

По окончании опыта полученный эфир-сырец охлаждали до комнатной температуры, добавляли 100 мл толуола и последовательно промывали 100 мл 5%-ного раствора карбоната натрия и 100 мл воды.

После каждой промывки реакционной массе давали хорошо отстояться. Органический слой отделяли от воды и сушили над безводным хлоридом кальция. Фильтровали содержимое колбы. Летучие продукты из эфира сырца отгоняли под вакуумом.

Полученный пластификатор содержит в своем составе этиловый, изобутиловый и изоамиловый эфиры фталевой кислоты в количестве 0,6 масс.%, 16,2 масс.% и 81,6 масс.% соответственно, а также хромотографически неопределенные компоненты – 1,6 масс.%.

Основные свойства опытного пластификатора в сравнении с дибутилфталатом представлены в таблице 1.2.

 

Таблица 1.2 Сравнение свойств дибутилфталата и опытного пластификатора

№ п/п Показатели ДБФ Полученный пластификатор

1. Плотность при 200С, кг/м3 1045-1049 1033±0,005

2. Массовая доля летучих, % 0,3 0,28±0,03

3. Температура вспышки, 0С 168 168±2

4. Кислотное число, мг КОН/г 0,07 0,07±0,005

5. Число омыления, мг КОН/г 399-407 350-360

 

В таблице 1.3 представлены примерные составы резиновой смеси 9003 с различным содержанием пластификатора.

 

Таблица 1.3 Составы резиновых смесей

№ п/п Наименование ингредиентов Смеси с различным соотношением содержания ДБФ:новый ДБФ, масс.ч.

1:0 0:1 0,25:

0,75 0,5:

0,5 0,75:

0,25

1. Наирит (каучук хлоропреновый) 32 32 32 32 32

2. Сера молотая 0,17 0,17 0,17 0,17 0,17

3. Дитиодиморфалин 0,11 0,11 0,11 0,11 0,11

4. Кислота стеариновая 0,5 0,5 0,5 0,5 0,5

5. Белила цинковые 0,9 0,9 0,9 0,9 0,9

6. Магнезия жженая 1,16 1,16 1,16 1,16 1,16

7. Диафен ФП 0,66 0,66 0,66 0,66 0,66

8. Дибутилфталат 9,3 - 2,325 4,65 6,975

9. Техуглерод П-514 17,6 17,6 17,6 17,6 17,6

10. Масло ПМ 0,33 0,33 0,33 0,33 0,33

11. Дифенилгуанидил 0,2 0,2 0,2 0,2 0,2

12. Тиазол 0,13 0,13 0,13 0,13 0,13

13. Полученный пластификатор - 9,3 6,975 4,65 2,325

ИТОГО 62,86 62,86 62,86 62,86 62,86

 

Таблица 1.4 Характеристики резиновых смесей с различным количеством вводимого пластификатора

№ п/п Смеси с различным соотношением содержания ДБФ:новый ДБФ, масс.ч. Условная прочность, МПа Относительное удлинение, % Относительная остаточная деформация Вымыва-ние, % Набухание, %

1. 0:1 14,0 230 14,0 -0,6 5,5

2. 0,25:0,75 13,0 220 12,0 -0,8 6,4

3. 0,5:0,5 12,9 200 12,0 -0,7 5,9

4. 0,75:0,25 12,89 180 8,0 -0,7 6,0

5. 1:0 12,7 170 8,0 -2,8 6,9

 

Из таблицы 1.4 видно, что по своим характеристикам новый предложенный состав резиновой смеси с содержанием ДБФ:новый ДБФ 0:1 обладает отличными от прежнего свойствами, а именно, снижается набухание резиновой смеси, вымывание пластификатора; увеличивается относительная деформация, удлинение и условная прочность (приблизительно на 10%) [3].

 

Таблица 1.5 Изменение свойств резиновых смесей с течением времени

№ п/п Шифры резиновых смесей Через 24 часа Через 72 часа условная прочность относительное удлинение  условная прочность относительное удлинение

1. 0:1 +5,2 +17,6 +11,2 +11,8

2. 0,25:0,75 -2,0 -9,1 -8,8 +5,0

3. 0,5:0,5 +4,8 -8,0 -5,3 -13,0

4. 0,75:0,25 +3,7 +5,9 +10,4 +5,9

5. 1:0 -6,5 -10 +0,7 +4,5

 

5. Наполнители по воздействию на каучук подразделяют на активные (усиливающие) и неактивные (инертные). Активные наполнители (углеродистая сажа и белая сажа – кремнекислота, оксид цинка и др.) повышают механические свойства резин: прочность, сопротивление истиранию, твердость. Неактивные наполнители (мел, тальк, барит) вводятся для удешевления стоимости резины. В резиновую смесь 7-57-9003 вводится активный наполнитель – сажа.

Часто в состав резиновой смеси вводят регенерат – продукт переработки старых резиновых изделий и отходов резинового производства. Кроме снижения стоимости регенерат повышает качество резины, снижая ее склонность к старению.

6. Красители минеральные или органические вводят для окраски резин. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.

 

1.1.3 Оборудование для производства  РТИ

Смешение каучука с ингредиентами проводится в специальных аппаратах – резиносмесителях или вальцах резиносмесительных, в которых каучук перетирается вместе с ингредиентами. Вулканизирующий агент вводится в резиновую смесь в последний момент приготовления резиновой смеси во избежание преждевременной вулканизации [4].

Резиносмесители являются основным видом оборудования, применяемым для приготовления резиновых смесей и пластикации каучука. Резиносмеситель представляет собой закрытую камеру с вращающимися навстречу друг другу валками с фигурным профилем или машину червячного типа, в загрузочную воронку которой подаются в определенной последовательности все компоненты резиновой смеси.

Преимуществом резиносмесителей являются:

• герметизация рабочего процесса (в результате чего не просыпаются сыпучие компоненты, и отсутствует пылевыделение);

• более приятные условия перемешивания материала;

• высокая производительность;

• значительное сокращение продолжительности процесса смешения (создаваемое в смесительной камере давление позволяет производить смешение за 2,5-8 мин.);

• безопасность работы.

Кроме того, резиносмесители легко агрегируются с машинами для последующей обработки смеси; протекающий в них процесс поддается автоматизации.

Различают резиносмесители периодического и непрерывного действия. К резиносмесителям периодического действия относятся машины, у которых загрузка компонентов и выгрузка готовой смеси происходит периодически. Резиносмесителями непрерывного действия называют машины, у которых загрузка и выгрузка готовой смеси происходят непрерывно.

Резиносмесители периодического действия отличаются друг от друга размерами и объемом одновременно загружаемого материала, формой рабочей части роторов, частотой их вращения, мощностью привода и давлением на обрабатываемый материал в камере смешения.

В зависимости от способа охлаждения все резиносмесители делятся на две группы. К первой группе относятся машины с открытым охлаждением смесительной камеры, ко второй – с закрытым охлаждением.

Основными видами смесителей, применяемых в настоящее время, являются резиносмесители со свободным объемом камеры 250 л. Смесители, имеющие частоту вращения роторов около 20 об./мин., считаются тихоходными, а 40 об/мин. - скоростными.

В современной технологии для приготовления резиновых смесей вальцы используют ограниченно, они находят применение на предприятиях с малым объемом производства (ООО “Автокомплект и К” является именно таким предприятием), с большим ассортиментом изделий, для приготовления смесей на основе некоторых каучуков специального назначения (фторкаучуков, акрилатных каучуков и др.), а также для приготовления резиновых смесей с волокнистыми наполнителями.

Для получения резиновой смеси на вальцах каучук и другие ингредиенты загружают на валки, которые вращаются по направлению к зазору между ними. Слои каучука, соприкасающиеся с поверхностью валков, за счет сил адгезии и трения затягиваются в зазор между валками со скоростью, соответствующей окружной скорости валков. Каждый следующий слой каучука или резиновой смеси, соприкасающийся с предыдущим слоем, за счет когезионных сил также увлекается в зазор вальцов, но со скоростью, постепенно уменьшающейся по мере удаления этого слоя от поверхности валков. Таким образом, в пространстве над зазором на поверхности каждого из двух валков всегда имеется “запас” каучука или резиновой смеси, скорость движения слоев в котором постепенно убывает по мере удаления их от поверхности соответствующего валка.

Информация о работе Технологии производства формовых резинотехнических изделий