Способы производства водорода. Перспективы его использования в энергетике

Автор работы: Пользователь скрыл имя, 15 Декабря 2010 в 23:06, реферат

Краткое описание

Термин «водородная энергетика» (ВЭ) в последние десять лет приобрел огромную популярность в мире науки, экономики и политики в связи с проблемой истощения невозобновляемых источников энергии — углеводородов. Анализ многочисленных публикаций на эту тему показывает, однако, что под этим термином часто понимается ряд различных программ. В статье сделана попытка эти программы разделить, выделить главные движущие идеи каждой программы и критически оценить их состояние в настоящий момент. Рассмотрены некоторые технологические достижения, которые могут оказать существенное влияние на дальнейшее развитие ВЭ, а также программы развития водородных технологий ведущих стан мира и крупнейших компаний.
Иногда в популярной литературе ВЭ противопоставляется «углеводородной» энергетике. Сразу необходимо отметить, что сфера водородной энергетики — "downstream", т.е. транспортировка, переработка и использование энергии, но не "upstream" (добыча первичного энергетического сырья). ВЭ лишь дополняет нефтяную, атомную или «возобновляемую» энергетику, но сама по себе не является новым источником энергии. Другими словами, водородная энергетика – это способ наиболее эффективного применения имеющихся источников энергии, повышения КПД их использования или получения иных преимуществ.
В свободном виде водород на Земле практически не существует, поэтому его надо производить. Из закона сохранения энергии следует, что потери на цикл «производство водорода — использование водорода» неизбежны. Поэтому одной из задач настоящей записки является выяснение, где эти потери оправданы.
Остановимся на наиболее перспективных и широкомасштабных приложениях водородных технологий.
Концепция экологически чистой водородной энергетики, часто называемая «водородной экономикой», включает:
Производство водорода из воды с использованием невозобновляемых источников энергии (углеводороды, атомная энергия, термоядерная энергия);
Производство водорода с использованием возобновляемых источников энергии (солнце, ветер, энергия морских приливов, биомасса и т.д.);
Надежная транспортировка и хранение водорода;
Широкое использование водорода в промышленности, на транспорте (наземном, воздушном, водном и подводном), в быту;
Обеспечение надежности материалов и безопасности водородных энергетических систем.

Содержание

Введение....……………………………………………………………….……………………...1
Водородная энергетика.……………………………………………………………….………..2
Перспективы использования водорода в энергетике………….………………………….…..2
Топливные элементы……………………………………………….……………………..........3
Метода производства водорода………………………………………………………………..7
Производство водорода из различных источников сырья…………………………...……....7
Паровая конверсия метана и природного газа ……………………………………….........7
Газификация угля ………………………………………………………………………........7
Электролиз воды…………………………………………………………………………......7
Из биомассы………………………………………………………………………………….9
Из мусора……………………………………………………………………………………..9
Химическая реакция воды с металлами…………………………………………………....9
Производство водорода из различных источников энергии ……………………………......9
Из энергии ветра……………………………………………………………………………..9
Из энергии солнца………………………………………………………………………….10
Из атомной энергии………………………………………………………………………...10
С использованием водорослей…………………………………………………………….10
Домашние системы производства водорода……………………………………………...10
Из потока морской воды……………………………………………………………………11
Получение водорода в металлическом состоянии…………………………………………...12
Проблемы производства водорода……………………………………………………...…….12
Водород как перспективное моторное топливо…………………………………………...…13
Перспективные преобразователи энергии для жидкого водорода………………………….18
Этапы внедрения энергетики в транспорте…………………………………………………..20
Новые отечественные технологии в производстве водорода……………………………….22
Водородный самолет: 23 часа без посадки…………………………………………………...23
Первый автомобиль для массового потребления……………………………....………….…23
Газель с ДВС, работающем на бензоводороде……………………………………………….25
Автомобиль ЗИЛ-5301 с экологически чистой комбинированной водородной установкой………………………………………………………………………………………26

Прикрепленные файлы: 1 файл

Промышленное производство водорода.doc

— 1.26 Мб (Скачать документ)

  Современные технологии промышленного производства водорода, к сожалению, имеют свои недостатки. Практически во всех случаях водород получают посредством парового риформинга: каталитического разложения метана при помощи водяного пара. Однако этот метод получения водорода потребляет много энергии и к тому же приводит к образованию углекислого газа в довольно большом количестве. В наше время его вклад в увеличение концентрации парниковых газов в атмосфере относительно невелик, но при использовании парового риформинга для обеспечения потребностей водородной экономики он возрастет в десятки, если не в сотни раз. Для перевода на водородное топливо одного только автотранспорта в США потребовалось бы ежегодно около 150 млн. тонн водорода. Это в 15 раз больше объемов производства водорода в США.

  Подобная  стратегия ни в коей мере не помогла  бы человечеству замедлить темпы  всемирного потепления. Стоимость каждой калории тепловой энергии, извлеченной  из полученного таким способом водорода, сегодня в 3-4 раза превышает стоимость калории, полученной при сгорании бензина - и это притом, что риформинг является самой дешевой технологией производства этого газа. К тому же природный метан сам по себе является наиболее экологичным органическим топливом, поэтому его использование для получения больших объемов водорода было бы нерациональным.

  Водород можно также производить из угля, который предварительно должен подвергнуться  газификации. Этот процесс предотвращает  проникновение в атмосферу содержащейся в угле серы и прочих токсичных примесей, которые можно предварительно отфильтровывать. Однако все эти операции очень энергоемки и тоже дают двуокись углерода в качестве побочного продукта. Кроме того, угольные залежи не безграничны. Расчеты показывают, что водородная экономика на угольном обеспечении могла бы привести к истощению всех угольных месторождений США всего лишь за 75 лет. Использование растительной биомассы в качестве исходного сырья опять-таки увеличит темпы накопления в атмосфере углекислого газа и к тому же резко увеличит нагрузки на почвы планеты, которые могут привезти к их деградации.

  Наиболее  оптимальным сырьем для производства водородного топлива могла бы служить вода. В последние годы в ряде стран разработаны экспериментальные технологии каталитического расщепления водяного пара в высокотемпературных химических реакторах. В общей сложности сейчас известно свыше ста каталитических циклов этого рода. Однако все эти процессы требуют нагрева реагентов до температур порядка 800º-1000º и потому при массовом применении вызывают больше проблем, чем решают.

  Известен  также способ расщепления воды, как  ее диссоциация с помощью электричества - электролиз. В экологическом отношении  такой способ производства водорода идеален, но только при условии, что удастся найти такие способы получения электроэнергии, которые не приводили бы к выбросам парниковых газов и прочим видам загрязнения окружающей среды и не требовали захоронения высокоактивных радионуклидов, образующихся при работе атомных реакторов.

  Практически неограниченным источником дешевой  и чистой энергии могли бы стать  термоядерные электростанции, но существуют они пока только в теории. Экологически чистую электроэнергию можно производить  и в солнечных установках, предпочтительно на полупроводниковых фотоэлементах, однако она обходится очень дорого и в обозримой перспективе вряд ли серьезно подешевеет.

  В ряде стран уделяется серьезное  внимание использованию энергии ветра. Однако, еще требуется время, чтобы, полученная таким образом, электроэнергия по себестоимости могла бы конкурировать с другими видами энергии.

    Некоторые специалисты возлагают  самые серьезные надежды на  микробиологию и геномику. На  нашей планете существуют одноклеточные организмы, поглощающие углекислый газ, воду и солнечный свет и выделяющие кислород и водород. Эти процессы происходят при участии различных ферментов, которые сейчас интенсивно изучаются. В 2007 году Университет Пенсильвании анонсировал технологию по производству водородного топлива из пищевых отходов (см. Производство водородного топлива из пищевых отходов). Не исключено, что со временем усовершенствованные аналоги применить и в промышленных масштабах. Подобные системы могли бы не только производить кислород и водород, но и утилизировать углекислый газ, что было бы дополнительным выигрышем. Однако эти исследования начались сравнительно недавно, и их практическая ценность пока остается под вопросом.    

Водород  как перспективное  моторное топливо.

  C 2001 года в промышленно развитых странах анонсированы и приняты крупные государственные программы НИОКР в области водородной энергетики. Они рассчитаны на период до 2020 г. и нацелены на уменьшение зависимости развитых стран от импорта энергоресурсов, решение комплекса экологических проблем, развитие новых технологий по использованию возобновляемых энергоресурсов. В перспективе это приведет к существенным изменениям топливно-энергетического баланса и формированию нового крупного международного рынка водородных технологий и энергоносителей, что будет иметь значительные социально-экономические и политические последствия для всего мира.

  Основным  направлением внедрения водородной энергетики является автотранспорт, в связи с обострением проблемы устойчивого обеспечения моторным топливом. Причин обострения проблемы несколько. Первая из них – истощение запасов нефти. По прогнозам комиссии ЮНЕСКО уже в первой четверти наступившего столетия в значительной мере будут исчерпаны разведанные запасы нефти. По данным Энергетической комиссии США за последние 20 лет в мире не было открыто ни одного нового крупного месторождения нефти. При этом необходимо помнить, что в странах ОПЕК, из-за стремления увеличения квот на добычу нефти, примерно на треть завышены объемы ранее разведанных месторождений нефти.

  В настоящее время каждую секунду  во всем мире добывается и потребляется (химической промышленностью, автомобилями и т.д.) примерно 127 т нефти. По расчетам ОПЕК, при существующим уровни добычи нефть в Великобритании закончится в ближайшие 3-4 года, в Норвегии – во втором десятилетии, в США – в первом десятилетии. Истощение российской нефти прогнозируется на 20-е годы. Нефтяных запасов Ирана, Саудовской Аравии, Венесуэлы хватит только до 50 годов нашего столетия.

  Второй  причиной обострения проблемы является увеличение количества автотранспортных средств. В настоящее время эксплуатируется  около 700 млн. автомобилей, которые потребляют более 60% всей добываемой нефти. Учитывая, что сейчас в мире за каждые две секунды с конвейера сходит новый автомобиль, к 2015 году количество автомобилей в мире вплотную приблизится к отметке в один миллиард единиц. И всем этим машинам потребуется бензин или дизельное топливо. По прогнозам специалистов, для удовлетворения всех нужд потребление нефти должно возрасти до 190 тонн в секунду. В то же время мировая нефтяная промышленность уже сегодня не в состоянии увеличить объем добычи нефти для компенсации стремительного прироста автомобильного транспорта, что приводит к увеличению ее дефицита. График с уровнем автомобилизации представлен на рис. 1:

  

  В настоящее время в мире не хватает около 4 млн. баррелей нефти в день, что привело к беспрецедентному росту цен на нефть. Уже сейчас баррель нефти стоит более 60 долл. США. К 2025 г. дефицит нефти прогнозируется до 20 млн. баррелей в день, что, очевидно,

  приведет  к непредсказуемому росту цен. К середине 30-х годов традиционные нефтяные топлива станут безумно дорогими, а к 2050 году полностью исчезнут. График роста дефицита нефти в мире представлен на рис. 2.

    
 
 
 
 
 

  Рис.2. Рост дефицита нефти по миру в целом 
 
 
 
 
 
 
 
 
 
 

  Аналогичные тенденции характерны и для нашей страны. Так, в России продолжается рост цен на нефтяные виды моторного топлива. В 2002 году цены на бензин выросли на 32%, на дизельное топливо – на 15%, в 2003 году, соответственно, на 36% и 16%. В результате к началу 2005 года уровень цен на бензин в России вплотную приблизился к ценам в США и других развитых странах. Очевидно, что и в дальнейшем тенденция роста цен на нефтепродукты будет сохраняться.

  Необходимо  отметить, что транспортный сектор Европы, Японии и США, на 90% зависит от нефти. Поэтому в связи с увеличением энергопотребления и истощением разведанных запасов нефти, в первую очередь, у развитых стран мира остается только один выход – срочно диверсифицировать свои топливно-энергетические балансы в сторону максимально возможного замещения в транспортном секторе нефтепродуктов другими видами энергоносителей.

  Наиболее  реальные альтернативные варианты - сжиженный  природный газ (СПГ) или жидкий водород (ЖВ). Они экологичнее, а СПГ еще  и дешевле. Сейчас качественный бензин в России стоит минимум 21 тыс. руб. за тонну, а СПГ – 8,5 тыс. руб. И этот разрыв будет расти. Учитывая, что запасы природного газа иссякнут на Земле к середине 70-х годов нашего столетия, водород смело можно рассматривается в качестве одного из наиболее перспективных вариантов моторного топлива XXI века.

  Его ресурсы - огромны, а так как в  процессе сгорания водорода образуется водяной пар, то можно сказать, что  он является самым экологически чистым видом моторного топлива. Единственное токсичное вещество - окислы азота, содержащиеся в выхлопе водородного двигателя в совершенно незначительных количествах по сравнению с бензиновыми моторами и уж тем более - с дизелями, легко обезвреживаются в каталитических нейтрализаторах.

  Прекрасно понимая перспективность в будущем водородного топлива, правительства США, Европейского Союза, Японии и других стран уже сейчас тратят миллиарды долларов на научные исследования и опытно-конструкторские работы, стремясь как можно скорее разработать промышленные технологии и внедрить их на рынке.

  Водородное  топливо для автотранспорта: газ  сжатый или газ сжиженный?

  Одним из серьезных вопросов в применении водорода в качестве моторного топлива  является выбор способа его хранения на борту автотранспортного средства. Водород — самый легкий среди химических элементов, поэтому в заданном объеме его помещается значительно меньше, чем других видов топлива.

  Так, при комнатной температуре и  нормальном атмосферном давлении водород  занимает примерно в 3 тыс. раз больший  объем, чем бензин с равным количеством энергии. Поэтому для того, чтобы заправить машину достаточным количеством топлива, необходимо либо нагнетать водород под высоким давлением, либо использовать его в виде криогенной жидкости, либо же оборудовать автомобили сложнейшими топливными системами.

  Обеспечение автозаправочных станций сжатым водородом и заполнение баллонов, находящихся в автомобиле, технически больших проблем не представляет. Современные материалы гарантируют  высокую надёжность таких сосудов. Однако увеличивается вес автомобиля и уменьшается полезное пространство, т.к. баллон с одним кг сжатого при 70 МПа водорода занимает в 7,5 раз больше места, чем энергетически эквивалентное количество бензина.

  В сжиженном виде водород занимает значительно меньше места, хотя для  этого его необходимо охладить всего до двух десятков градусов выше абсолютного нуля. Однако, развитие криогенных технологий и успехи, достигнутые в сфере использования сверхнизких температур, уже сегодня позволяют без особого ущерба полезному пространству автомобиля хранить на его борту запас жидкого водорода, достаточный для пробега 500 км и более.

  Достоинством  данной системы хранения является наименьшая масса и высокая объемная концентрация водорода; жидкий водород эквивалентен газообразному, сжатому до 170 МПа. Поэтому если к системе хранения водорода предъявляются ограничения по массе и по объему, что характерно для транспортных средств, то преимущество имеет криогенная система хранения.

  Жидкий  водород, производство которого растет в мире ежегодно на 5%, является важным элементом инфраструктуры снабжения потребителей водородом. В США производственные мощности позволяют в год получать до 120 тысяч тонн жидкого водорода, из которых 15% расходуется на РКТ, остальное – используется в химической промышленности (37%), металлургии (21%), электронике (16%), стекольной промышленности (4%).

  Одним из способов связанного хранения водорода являются гидриды. Однако лучшие из известных  сегодня гидридов - железо-титановые  и никель – магниевые – уступают по объемным и весовым параметрам криогенному способу хранения водорода.

  Проводятся  разработки в области систем хранения водорода с использованием углеродных нанотрубок, но все имеющиеся на сегодняшний день конструкции обладают рядом серьезных недостатков, которые  не позволяют широко использовать на транспортных средствах.

Информация о работе Способы производства водорода. Перспективы его использования в энергетике