Факторы, влияющие на качество поверхности обработанных деталей

Автор работы: Пользователь скрыл имя, 19 Мая 2013 в 11:55, контрольная работа

Краткое описание

Современное развитие промышленного производства требует создания новых материалов, механизмов, станков и оборудования, обладающих повышенными эксплуатационными свойствами.
Качество обработанной поверхности является одним из важнейших факторов, обеспечивающих высокие эксплуатационные свойства деталей машин и приборов и обусловливается свойствами металла и методами обработки: механической, электрофизической, электрохимической, термической и т. д.Высота, форма, характер расположения и направление неровностей поверхностей обрабатываемых заготовок зависят от ряда причин: режима обработки, условий охлаждения и смазки режущего инструмента, химического состава и микроструктуры обрабатываемого материала, конструкции, геометрии и режущей способности инструмента, типа и состояния оборудования, вспомогательного инструмента и приспособлений.

Прикрепленные файлы: 1 файл

Работа исследовательская.doc

— 382.00 Кб (Скачать документ)

 

 

 

 

Но какой бы станок или способ обработки не применялся, несколько деталей, даже обработанных на одном и том же станке одним и тем же инструментом, будут немного отличаться друг от друга. Это объясняется появлением неизбежных погрешностей обработки, которые служат мерой точности обработанной детали.

 

2.3.  Причины, вызывающие появление погрешностей при обработке металлов резанием:

 

 

  1. неточности самого металлорежущего станка, вызванное погрешностями изготовления его деталей и неточностями сборки;
  2. погрешности установки заготовки;
  3. неточности изготовления, установки, настройки и износ режущего инструмента;
  4. упругие деформации технологической системы;
  5. тепловые деформации технологической системы;
  6. остаточные деформации в заготовке;
  7. изношенность направляющих, ходовых винтов и в целом самого станка и др.

При эксплуатации инструмента по мере его изнашивания наступает такой момент, когда дальнейшее резание инструментом должно быть прекращено, а инструмент отправлен на переточку. Момент затупления инструмента устанавливается в соответствие критериями износа, под которым понимается сумма признаков или один решающий признак. Применяется два критерия: первый - критерий оптимального износа и второй- критерий технологического износа. В обоих критериях за основу принимается линейный износ задней поверхности, так как она изнашивается всегда при обработке любых материалов и при всех режимах резания, и измерение ширины площадки износа гораздо проще, чем глубины лунки износа.

Качество поверхности, обработанной режущими инструментами, определяется шероховатостью и физическими  свойствами поверхностного слоя. Обработкой резанием не может быть получена идеально ровная поверхность. Режущие кромки инструментов оставляют неровности в виде впадин и выступов различной формы и размеров.

Поверхностный слой после  обработки резанием существенно  отличается от основной массы металла, так как под действием инструмента  его твердость и кристаллическое  строение изменяются. Толщина дефектного поверхностного слоя зависит от материала заготовки, вида и режима обработки и др. От качества поверхности зависят следующие эксплуатационные характеристики деталей: износостойкость поверхностей трущихся пар, характер посадок подвижных и неподвижных соединений, усталостная или циклическая прочность при переменной нагрузке, противокоррозионная стойкость поверхности и др.

2.4.Показатели качества поверхности обработанной детали.

Точностью изготовления деталей в машиностроении называют степень соответствия заранее установленному образцу. Под точностью детали понимается степень соответствия реальной детали, полученной механической обработкой заготовки, по отношению к детали, заданной чертежом и техническими условиями на изготовление, т.е. соответствие формы, размеров, взаимного расположения обработанных поверхностей, шероховатости поверхности обработанной детали требованиям чертежа

 

Следовательно, качество детали - понятие комплексное, включающее всестороннюю оценку соответствия реальной детали по отношению к заданной.

    2.5.Качество обработанных  поверхностей в зависимости от условий обработки.

 

Качество поверхности, обработанной на токарном станке.

 

На поверхности, обработанной токарным резцом, образуются неровности в виде винтовых выступов и винтовых канавок , подобные резьбе, вполне отчетливо заметные при крупной подаче s и обнаруживаемые лишь при помощи специальных приборов, если подача невелика.

 

Такие неровности расположены  в направлении подачи и образуют поперечную шероховатость в отличие  от продольной шероховатости  образуемой неровностями в направлении скорости резания v.

О происхождении последних неровностей будет сказано ниже.

 

При токарной обработке  наибольшее значение имеет поперечная шероховатость, характеризуемая формой и размерами винтовых выступов, образующих неровности. Высота таких неровностей  зависит от очень многих факторов, участвующих в процессе резания и действующих в разных случаях различно, и поэтому не может, быть определена расчетом, а находится лишь опытным путем. При обтачивании более вязких металлов, например малоуглеродистых сталей, высота неровностей получается большей, чем при обработке хрупких металлов, например чугуна. При обработке хрупких металлов (при   стружке  надлома) на обработанной поверхности получаются иногда очень заметные углубления, образующие   продольную   шероховатость.

 

Шероховатость   поверхности уменьшается, если материал (сталь) подвергнут термической обработке,  что повышает     однородность     его структуры  шероховатости, получающиеся при токарной обработке.

 

Высота неровностей  зависит в наибольшей степени  от величины  подачи.   При крупных подачах эта высота значительно отличается от расчетной и превышает ее в несколько раз. Влияние глубины резания на шероховатость поверхности незначительно и не имеет практического значения.

Скорость резания существенно  влияет на образование шероховатости поверхности. При скорости резания до 3—5 м/мин размеры неровностей незначительны; с увеличением скорости резания неровности возрастают; при повышении скорости резания до 60— 70 м/мин высота неровностей уменьшается, и при скорости около 70 м/мин шероховатость поверхности получается наименьшей. Дальнейшее повышение скорости резания незначительно влияет на шероховатость обработанной поверхности. Наличие нароста на резце увеличивает шероховатость поверхности, обработанной данным резцом.

 

Значительное влияние  на шероховатость поверхности оказывает применяемый при обработке состав смазочно-охлаждающей жидкости. Наилучшие результаты получаются, если жидкость содержит минеральные масла, мыльные растворы и другие вещества, повышающие ее смазочные свойства.

Опыты ряда исследователей показали, что неровности режущей кромки резца, получившиеся вследствие некачественности доводки его, переносятся на обработанную поверхность в увеличенных размерах.

Степень затупления резца  также влияет на шероховатость поверхности. При небольшом затуплении резца обработанная поверхность часто получается даже несколько чище, чем при остром резце. При дальнейшем затуплении резца шероховатость поверхности увеличивается. Материал режущего инструмента в рассматриваемом случае также имеет значение. Так, например, резцами из твердых сплавов В Кб, ВК8 очень трудно получить хорошую поверхность при обработке вязких материалов, что объясняется склонностью этих сплавов к выкрашиванию при указанных условиях работы. Применение при этих же условиях твердых сплавов, например марок Т5К6, Т15К6 и др., а также быстрорежущих резцов позволяет уменьшить     шероховатость     поверхности. На   шероховатость   обработанной поверхности влияют и  вибрации, возникающие в процессе резания. Особое значение в    этом   случае    приобретают чрезмерные   зазоры   в   направляющих суппорта и в подшипниках, неточности зубчатых передач станка,  плохая балансировка     вращающихся     частей станка, недостаточная жесткость обрабатываемой детали, углы резца, его вылет и многие причины, отмеченные в разных главах книги. Все эти вредные явления при токарной обработке вызывают продольную шероховатость поверхности. Классификация и обозначения шероховатости поверхностей. ГОСТ 2789—59 устанавливает 14 классов чистоты (шероховатости) поверхности. Обозначения этих классов, указываемые на чертеже детали, приведены в табл. 5. При необходимости в особо мелкой градации степеней шероховатости ГОСТ 2789—59 допускает разделение классов 6—14 на разряды. В каждом из классов введены три разряда, обозначаемые буквами а, б и в. Соответствующая буква проставляется после цифры, указывающей класс чистоты данной поверхности. Например, обозначение \/8а указывает, что данная поверхность должна иметь шероховатость, соответствующую разряду а 8-го класса чистоты по ГОСТ 2789—59. Шероховатость поверхностей деталей машин определяется путем сопоставления данной поверхности с эталонами шероховатости (рис. 68), или более точно — посредством специальных приборов. Оценка шероховатости обработанной поверхности по эталонам (образцам)  производится на  рабочих местах методом сравнения. Образцы выпускаются для разных видов обработки (точения, фрезерования и т. п.) и для различных металлов (стали, чугуна и т. п.), для  классов чистоты от V4 до V13.         

Приборы оптические (профилометры,   двойной   микроскоп   Линника, микроинтерферометры), а также щуповые (профилографы,   профилометры и др.) используются главным образом в измерительных лабораториях. С помощью таких приборов измеряется величина   высоты   неровностей Rz или другой параметр определения шероховатости — среднее арифметическое отклонение профиля Ra. Среднее значение высоты неровностей для некоторых классов чистоты, обеспечиваемых токарной обработкой, составляет в мкм:

 

Δ7..................... 3,2—6,3      Δ4.......................... 20—40

 

Δ6..................... 6,3—10       Δ3.......................... 40—80

 

Δ5..................... 10—20

 

Шероховатости поверхностей грубее 1-го класса обозначаются в чертежах знаком \J , над которым указывается  высота неровностейRz в микрометрах, например, Яz500У . Поверхности, не подвергаемые обработке, обозначаются в чертежах знаком ∞.

С 1 января 1975 г. ГОСТ 2789—59 заменяется новым ГОСТ 2789—73, который  вводит дополнительные параметры шероховатости  поверхности (шесть вместо двух), новые обозначения классов шероховатости и др.

Несмотря на высокие  качества современных токарных станков, совершенство методов обработки, точность применяемых измерительных инструментов и наличие других благоприятных  условий, влияющих на точность обработки детали, достигнуть совершенства точных размеров и правильной формы ее невозможно. Основные причины образования погрешностей, возникающих при токарной обработке, рассматриваются ниже. Погрешности, вызываемые неточностью станка и зажимного приспособления. Допускаемые отклонения от заданной точности при сборке станка, а также в результате износа его частей отражаются на правильности формы обрабатываемых деталей. Так, например, при обтачивании детали на станке, шейки шпинделя которого овальны, поверхность детали получается также овальной, (эллиптичной), а не цилиндрической, так что при измерении двух взаимно перпендикулярных диаметров детали в одном и том же поперечном сечении получаются разные результаты.

 

Другим видом отклонения от правильной формы цилиндрических деталей, обрабатываемых на токарных станках, является их конусность, получающаяся вследствие неправильно установленной передней (если обрабатываемая деталь закреплена в патроне) или задней бабки (при установке детали в центрах). Погрешности при обработке детали во многих случаях вызываются недостаточной точностью или неисправностью зажимных приспособлений. Очевидно, например, что при обработке наружной поверхности втулки, насаженной на оправку с сильно изношенными центровыми отверстиями, требуемой концентричности наружной поверхности с поверхностью отверстия не получится. Неточность формы детали обусловливает и неточность ее размеров. Погрешности, вызываемые неточностью формы, размеров и установки режущего инструмента, а также в результате его износа. Во многих случаях точность размеров и формы обрабатываемой детали или отдельных участков ее зависит прежде всего от точности размеров и формы применяемого режущего инструмента. Ширина канавки, обрабатываемой мерным резцом, получится равной требуемой лишь при условии, что длина режущей кромки резца соответствует ширине канавки. Точность формы фасонной поверхности зависит, очевидно, от точности формы фасонного резца, использованного для обработки этой поверхности . Если точный по ширине прорезной резец при обработке канавки, о которой говорилось выше, установлен так, что главная режущая кромка его не параллельна оси детали, то ширина канавки получится больше ширины резца и форма ее будет неправильна. Очевидна также и зависимость точности размера детали от точности установки резца в рабочее положение, например на требуемый диаметр детали по лимбу. Существенное значение имеет износ режущего инструмента в процессе работы, который иногда настолько велик, что диаметр детали у конца, расположенного у передней бабки, получается несколько больше диаметра конца детали, с которого начато обтачивание (у задней бабки). Погрешности, вызываемые неточностью измерительного инструмента и неправильным пользованием им. Такие погрешности могут быть результатом некачественного изготовления измерительного инструмента или неудовлетворительного состояния вследствие естественного износа или небрежного обращения. Погрешности, вызванные первой из указанных причин, редко встречаются при надлежащей организации производства, так как все измерительные инструменты тщательно контролируются перед выпуском в продажу и выдачей на рабочее место. Более точные измерительные инструменты (штангенциркули, микрометры и т. д.) снабжаются специальными паспортами, в которых указываются погрешности данного инструмента. Естественный износ измерительных инструментов не должен являться причиной неточности измерений, если в данной мастерской хорошо организован и действует периодический контроль инструментов, осуществляемый специальными лицами.

 

Величина погрешностей измерений может быть весьма существенной, если для данного измерения применяется инструмент несоответствующей точности. Например, наибольшая точность измерения, которая может быть достигнута (опытным рабочим) при помощи кронциркуля и линейки с делениями, составляет около 0,3 мм. Использование этих инструментов для более точных размеров является источником погрешностей измерений. Неправильная установка инструмента относительно измеряемой поверхности может привести к значительной ошибке измерения. Например, при измерении диаметра отверстия не в плоскости, перпендикулярной к оси детали, а в плоскости, расположенной наклонно по отношению к этой оси, погрешность в измерении неизбежна. При надвигании измерительного инструмента или калибра на проверяемую деталь неопытный рабочий может допустить неточность измерения в несколько сотых долей миллиметра, если применит значительное усилие (нажим). Погрешность измерений получается и в том случае, когда во время измерения не учитывается температура детали. Очевидно, что если измерять нагревающуюся в процессе резания и еще не остывшую деталь, то размер ее будет больше соответственного размера охлажденной детали.

 

                                      Заключение.

Совершенно  справедливо утверждать, что качество заложено в поверхностном слое детали. Методами литья, ковки, штамповки, прокатки, сварки, термической обработки, механической обработки резанием, включая шлифование и полирование, - основными технологическими методами машиностроительных производств создаются машины, которые при рациональных конструктивных формах и правильном выборе материалов могут быть лёгкими, жесткими и прочными. Однако долговечность работы машины будет зависеть от того, как быстро или медленно будут изнашиваться различные трущиеся поверхности, как быстро или медленно будут возникать и развиваться трещины, особенно при знакопеременных нагрузках, т.е. долговечность будет зависеть от качества поверхностного слоя детали. Правильное решение, принятое при выборе параметров шероховатости поверхностей деталей, а также при выборе методов обработки, обеспечивающих получение; поверхностей с заданной шероховатостью, оказывает серьезное влияние на качество: конструкции, ее технологичность и позволяет установить наиболее экономичные методы изготовления деталей. Таким образом, даже эта краткая исследовательская работа ясно показывает, что на качество обработанной поверхности влияет много факторов: материал обрабатываемой заготовки, вид обработки, жесткость системы станок – приспособление – инструмент деталь, характер, форма, материал и степень остроты или износа режущих инструментов, режим обработки, вид смазочно-охлаждающей жидкости (СОЖ), а также квалификация рабочего человека, стоящего у станка, его отношение к делу. Оптимизация всех факторов, влияющих на качество обработки, обеспечит стабильность получения желаемого результата: качества изделия в конечном итоге, что принесет любому предприятию прибыль и вознаграждение за свой труд, а потребителю экономию за счет снижения эксплуатационных издержек при техобслуживании и ремонте машин.

Информация о работе Факторы, влияющие на качество поверхности обработанных деталей