Дисперсионные среды для жидких лекарственных форм. Водоочистка

Автор работы: Пользователь скрыл имя, 29 Октября 2013 в 13:25, реферат

Краткое описание

Поскольку воду для фармацевтических целей получают из воды питьевой, источником которой служит природная вода, важным моментом является освобождение последней от присутствующих в ней примесей. В природной воде могут содержаться растворимые вещества, образующие ионы различных солей, суспензии типа гидроксидов металлов; органические кислоты, органические соединения хлора; вещества типа инертных газообразных органических соединений; микроорганизмы, планктоны, водоросли и т.д. Значительная часть этих веществ удаляется на стадии получения воды питьевой. Однако вода для фармацевтических целей должна соответствовать особым требованиям. Особые требования к ней на современном фармацевтическом предприятии обусловлены тем, что вода используется практически на всех стадиях производства.

Содержание

Введение
1.Жидкие лекарственные формы
2.Растворы .Растворители .Требования предъявляемые к ним
3.Вода очищенная
4 Вода для инъе кций
5. Методы очистки воды
а)Дистилляция
б) Ионный обмен
в) Фильтрация
6. Хранение и системы распределения воды очищенной
Заключение
Литература

Прикрепленные файлы: 1 файл

срс.doc

— 201.50 Кб (Скачать документ)

Системы ионного обмена требуют предварительной очистки  от нерастворимых твердых частиц, химически активных реагентов во избежание загрязнения ("отравления") смолы и ухудшения ее качества.

Ионный обмен удаляет  только полярные органические соединения, а растворенная органика загрязняет гранулы ионообменных смол, снижая производительность. В случаях когда требуется вода очищенная от неорганики и органики, эффективным будет сочетание обратного осмоса и ионного обмена.

Ионообменная технология обеспечивает классическое обессоливание  воды и является экономичной системой при получении воды очищенной. Данная технология позволяет получать воду с очень низким показателем удельной электропроводности. Поскольку данный метод не обеспечивает микробиологической чистоты из-за использования ионообменных смол, его использование для получения воды очищенной целесообразно в сочетании со стерилизующей (0,22 мкм) микрофильтрацией.

Фильтрация

 

Технология фильтрации играет важнейшую роль в системах обработки воды. Выпускается широкий диапазон конструкций фильтрующих устройств для различного применения. Устройства и конфигурации систем широко варьируют по типам фильтрующей среды и месту использования в технологическом процессе.

Одними из широко используемых в фармацевтической практике являются фильтры с активированным углем, адсорбирующим органические вещества с низким молекулярным весом, хлор и удаляют их из воды. Они используются для получения определенных качественных признаков (обесцвечивания воды и улучшения ее вкуса и др.), для защиты от реакции следующими за ними поверхностями из нержавеющей стали, резиновых изделий, мембран.

Следует отметить, что с момента удаления активного хлора вода лишается какого-либо бактерицидного агента и, как правило, происходит стремительный рост микроорганизмов. В угольных фильтрах имеются особенно благоприятные условия для развития микробиологической флоры из-за очень большой и развернутой поверхности. В последнее время в качестве фильтрующей среды применяется активированный уголь, импрегнированный серебром, применяемый для снижения микробиологического роста.

Осмос, обратный осмос, нанофильтрация, ультрафильтрация.

Получение сверх чистой воды - очистка воды от растворенных и не растворенных примесей осуществляется на молекулярном уровне мембранными методами очистки воды: осмос, обратный осмос, нанофильтрация, ультрафильтрация, микрофильтрация.

 

Таблица 4.

Классификации мембранных методов очистки воды, по размеру улавливаемых загрязнений

Классификация мембранных методов очистки воды

Размер пор, рейтинг  фильтрации, мкм

Виды загрязнений

Молекулярная масса  загрязнений

Метод очистки воды

1-100

механические взвеси, окисленные загрязнения

-

Механическая очистка  воды, макрофильтрация

0,1-1

бактерии, коллоиды, взвеси

>500 000

Микрофильтрация

0,002-0,1

коллоиды, бактерии, вирусы, малекулы больших соединений

10 000 - 500 000

Ультрафильтрация

0,002-0,001

многозарядные ионы, молекулы, вирусы

300 - 10 000

Нанофильтрация

< 0,0001

ионы

<300

Обратный осмос, осмос


 

Микрофильтрация - механическое фильтрование тонкодисперсных и коллоидных примесей размером, как правило, выше 0,1 мкм. Обычно элементы микрофильтрации устанавливаются в качестве подстраховки на последних ступенях очистки в комплексах водоподготовки. Микрофильтрация применяется в медицине, для очистки воды в системах водоподготовки, для фильтрования полуфабрикатов, ингредиентов, различных технологических сред, готового продукта перед фасовкой. Мембраны микропористой фильтрации являются физическим барьером для частиц и микроорганизмов размером до 0,1 микрон. Системы ELGA оборудованы ультрамикрофильтрами до 0,05 микрон. В большинстве случаев неочищенная вода содержит коллоиды со слабым отрицательным зарядом. Фильтр с модифицированной поверхностью мембраны позволяет фильтру удерживать естественные коллоиды, размеры которых меньше размера пор мембраны. В системах очистки воды широко применяются фильтры с абсолютным размером пор 0,2 микрон. Они удерживают частицы угольных фильтров, смол ионообменных фильтров, а также бактерии.

Микрофильтр может установлен непосредственно в диспенсер  в качестве последней ступени  очистки.

Микрофильтр может быть частью рециркуляционного контура. Таким образом бактерии непрерывно удаляются из воды. Микрофильтры также устанавливаются в критических точках для абсолютной защиты системы от контаминации.

Ультрафильтрация - по рейтингу фильтрации воды занимает промежуточное положение между нанофильтрацией и микрофильтрацией. Ультрафильтрационные мембраны имеют размер пор от 20 до 1000 A (или 0,002-0,1 мкм) и позволяют задерживать тонкодисперсные и коллоидные примеси, макромолекулы (нижний предел молекулярной массы составляет несколько тысяч), водоросли, одноклеточные микроорганизмы, цисты, бактерии, вирусы, цисты и т.д.

Нанофильтрация - применяется для получения особо чистой воды, очищенной от бактерий, вирусов, микроорганизмов, коллоидных частиц органических соединений (в том числе пестицидов), молекул солей тяжелых металлов, нитратов, нитритов и других вредных примесей. Большим преимуществом нанофильтрации перед обратным осмосом при производстве питьевой воды - является сохранение жизненно необходимых для здоровья человека солей и микроэлементов.

Обратный осмос - применяется для произвостдва сверх чистой воды, размеры пор в обратноосмостических мембранах сопоставимы с размером молекулы воды. В среднем содержание растворенных веществ после стадии обратного осмоса снижается до 1-9%, органических веществ - до 5%, коллоидные частицы, микроорганизмы, пирогены отсутствуют. Таким образом происходит очистка воды от всех растворимых и нерастворимых примесей.

На сегодняшний день мембранные технологии одни из самых надежных, эффективных и экономичных методов очистки воды. Фильтры для воды и системы, использующие для очистки воды обратный осмос, и нанофильтрацию устроены достаточно просто: основной элемент - это мембрана. Остальные элементы обеспечивают благоприятные условия работы таких систем.

Среди преимуществ обратного  осмоса следует отметить простоту и независимость от солесодержания исходной воды, низкие энергетические затраты и значительно невысокие затраты на сервис и технический уход. Система достаточно легко подвергается мойке, дезинфекции и очистке, не требует использования сильных химических реагентов и необходимости их нейтрализации.

При осуществлении осмотического  процесса определенную проблему представляет выбор мембран. Он должен быть основан на требованиях, предъявляемых к водоподготовке, рабочим условиям и характеристикам, условиям санации, безопасности, источнику подаваемой в систему воды.

Обратный осмос обычно используется в системах получения  воды для фармацевтических целей  в следующих случаях: для получения воды очищенной, и как подготовительный шаг перед дистилляцией для получения воды для инъекций; перед установками ионного обмена для снижения расхода кислоты и щелочи, необходимой для регенерации; как конечный этап для получения воды для инъекций (двухступенчатый осмос).

 

 

Для получения воды очищенной  в последнее время применяют двухступенчатую систему обратного осмоса. Предварительно вода поступает на первую ступень обратного осмоса. Образующийся при этом концентрат сбрасывается. Пермеат подается на вторую ступень обратного осмоса и еще раз подвергается очистке. Так как концентрат от второй ступени обратного осмоса содержит меньше соли, чем питающая обратноосмотическую установку вода, его можно смешать с подаваемой водой и тем самым вернуть в систему.

При использовании обратного  осмоса, как предварительной ступени очистки воды, возможно использование одноступенчатой установки. При большой солевой нагрузке и высоком содержании хлоридов в воде данная установка в большинстве случаев не сможет обеспечить качество получаемой воды, регламентированное Фармакопеей.

У этого метода есть свои недостатки. Обратный осмос не способен полностью удалять все примеси из воды и обладает низкой способностью к удалению растворенных органических веществ с очень малым молекулярным весом.

Получаемая этим методом  вода холодная (большинство систем используют воду с температурой от 5 до 28⁰С), что увеличивает возможность микробной контаминации.

По сравнению с системами  ионного обмена обратный осмос не позволяет значительно снизить  удельную электропроводность, в частности  из-за высокого содержания углекислого газа в воде. Диоксид углерода обычно свободно минует обратноосмотические мембраны и попадает в пермеат в тех же количествах, что и в исходной воде. Во избежание этого, рекомендуется использовать анионообменные смолы перед обратноосмотическим модулем, либо декарбонизатор после модуля обратного осмоса.

Материал мембран является достаточно хрупким, возможно нарушение  его целостности за счет превышения допустимого давления, либо за счет образования противодавления в  линии фильтрата.

При использовании мембран, не выдерживающих воздействие свободного хлора, обязательным является предварительная установка угольного фильтра или дозирование соединений, содержащих натрия сульфит.

Обратноосмотические мембраны неустойчивы к воздействию высоких  температур. Поэтому необходимо обеспечить охлаждение воды, если она поступает на установку нагретой.

Мембраны могут накапливать  грязь. Поэтому их следует эксплуатировать в перекрестном потоке, т.е. вдоль поверхности мембраны всегда должен идти поток, который уносит отделенный материал, в связи с чем, наряду с фильтратом (пермеатом), образуется концентрат.

Некоторые вещества, такие  как сульфаты бария, стронция, кальция  карбонат, диоксид кремния, механические и коллоидные частицы могут приводить  к забиванию пор мембранных элементов, "оштукатуриванию", "остеклению" их поверхности. Это можно предотвратить использованием стадий предварительной очистки.

Из выше сказанного следует, что для эффективной работы обратноосмотических  установок необходимо учитывать  качество исходной воды и осуществлять грамотный выбор методов ее предварительной обработки и конфигурацию системы в целом.

Хранение и распределение  воды очищенной

 

Основной задачей при  проектировании системы хранения и  распределения воды очищенной является обеспечение постоянного движения воды в трубопроводе, отсутствии застойных зон, которые способствуют росту микроорганизмов и образованию биопленок на поверхностях. Современные системы хранения и распределения подразумевают под собой рециркуляционную систему с однонаправленным движением потока и возможностью полного удаления воды из трубопровода.

 

Критическими параметрами  при хранении и распределении  воды очищенной являются:

 

температура;

движение воды и ее скорость;

давление;

материалы трубопроводов  и емкости для хранения.

Распределение и хранение воды очищенной согласно правилам GMP должно осуществляться при температурах, препятствующих росту микроорганизмов - выше 80оС или ниже 15оС. Системы, использующие холодную воду, должны быть оборудованы  УФ-установками для контроля уровня микроорганизмов в воде.

 

Движение воды в трубопроводе должно быть турбулентным со скоростью  от 1,5 до 3 м/с, при этом ни одна часть  трубопровода не должна находиться в  горизонтальном положении, а точки  отбора воды должны быть оборудованы  мембранными вентилями (санитарного исполнения) и спроектированы с учетом правила шестикратного диаметра.

 

Строение тройника в  точке отбора воды

 

Строение тройника в  точке отбора воды

 

При правильном проектировании системы распределения критическим  является правильный выбор оборудования для достижения необходимого давления воды в сети и в точках разбора. При этом необходимо учитывать потери давления при трении воды о стенки трубопровода, потери в местах соединений, поворотов, подъемов распределительной петли и др. Необходимо учитывать среднесуточное, среднечасовое и пиковое потребление воды. При увеличении пиковых расходов воды необходимо организовывать семафорную систему разбора.

 

В соответствии с требованиями ФС 42-2619-97 «Вода очищенная» и GMP воду очищенную хранят в закрытых емкостях, изготовленных из материалов, не изменяющих свойств воды и защищающих ее от инородных частиц и микробиологических загрязнений с исключительно гладкой поверхностью (менее 0,8 Ra ) и защитой надежным фильтром от бактерий, пыли. Емкость хранения должна быть оптимально подобрана, чтобы обеспечить оборот воды по системе рециркуляции от 1 до 5 раз в час. Вода из емкости при необходимости должна полностью сливаться. Поэтому во избежание застойных зон емкость должна устанавливаться вертикально, и высота должна составлять 2 диаметра.

 

Одной из ключевых проблем  является правильный выбор материала  для системы хранения и распределения  воды очищенной. Материал конструкций  не должен ухудшать качества воды и  соответствовать требованиям и  условиям фармацевтического производства.

 

Основными используемыми  материалами являются:

 

полимерные материалы, подобные PP и PVDF (от англ. Polypropylene - полипропилен, Polyvinylidenefluoride – поливинилиденфторид) и др., наиболее часто используемые при проектировании холодных контуров распределения воды очищенной;

нержавеющая сталь марки 316 L с шероховатостью поверхности  не более 0,8 Ra . Из-за высокой стоимости  нержавеющая сталь используется в настоящее время для систем распределения воды для инъекций, чтобы обеспечить паровую стерилизацию трубопровода и постоянную циркуляцию при температуре более 80оС.

 

Системы хранения и распределения  воды очищенной представляют собой  циркуляционный контур, в который  включена емкость для хранения. Все поверхности, находящиеся в контакте с водой, должны быть выполнены из материалов, допущенных к контакту с жидкими лекарственными препаратами с соответствующей степенью обработки. Скорость движения воды по трубопроводам должна обеспечивать турбулентность потока. В системах не должно быть застойных зон, способных стать местом концентрации биопленки. Все датчики, клапана, соединения должны использоваться только санитарного типа. Расстояние от установки обратного осмоса или дистиллятора до накопительной емкости, а также от разборных клапанов до непосредственного места потребления воды должно быть сведено к минимуму. Необходимо обеспечение и возможность стерилизации этих участков. В случае подвода воды к оборудованию следует применять разборные клапана с автоматическим приводом. В системах распределения необходим контроль температуры. Трубопроводы, как правило, изолируются. Для достижения эффективности санитарной обработки необходимо обеспечение полной опорожняемости системы и отсутствие не смачиваемых поверхностей, а для гарантии бесперебойной работы - возможность оперативной замены или переключения циркуляционных насосов. Система распределения должна быть надежно изолирована от воздействия окружающей среды. Необходимо обеспечение возможности непрерывного мониторинга качества и периодического отбора проб для полного анализа.

Информация о работе Дисперсионные среды для жидких лекарственных форм. Водоочистка