Автоматизация процессов получения заготовок, изготовления деталей и сборки изделия

Автор работы: Пользователь скрыл имя, 18 Января 2015 в 18:54, реферат

Краткое описание

В течение длительного времени в различных отраслях производства сосуществовали, почти не смешиваясь и не влияя друг на друга, два разнородных вида производства.
Первый вид — это высокоавтоматизированное и высокоэффективное массовое производство, которое базируется на высокопроизводительных поточных и автоматических линиях, многопозиционном и многоинструментальным технологическом оборудовании.

Содержание

Введение
Вопросы автоматизации процессов получения заготовок, изготовления деталей и сборки изделия
-Влияние уровня автоматизации производства на структуру автоматизированной системы технологической подготовки производства
-Использование станков с ЧПУ
-Применение промышленных роботов
-Комплексная автоматизация производства
Литература

Прикрепленные файлы: 1 файл

4. avtomatizaciya_processov_polucheniya_zagotovok_izgotovleniya.doc

— 167.00 Кб (Скачать документ)

Разработка маршрута ведется в три этапа:

♦ для каждой поверхности выбираются методы обработки, и с учетом требований к качеству поверхности и точности детали назначается оптимальное число переходов;

♦ устанавливается оптимальная последовательность выполнения переходов (при этом необходимо черновую обработку выполнять в начале автоматической линии, а чистовой отделочный переход - в конце);

♦ переходы группируются по отдельным станкам автоматической линии и по шпиндельным коробкам (на этом этапе уточняются режимы резания, а после уточнения циклограммы линии режимы резания утверждаются окончательно).

 

Замена режущих инструментов

При разработке технологических процессов необходимо предусмотреть, чтобы эта замена производилась по графику, в зависимости от времени размерной стойкости инструмента.

 

Введение в линию термообработки

При термообработке с нагревом токами высокой частоты (ТВЧ), необходимо предусмотреть введение средств автоматического контроля механической обработки и термообработки на промежуточных операциях.

 

Программирование автоматических линий

Как правило, программирование производится в процессе проектирования линии. После этого линию, использующую станки с механической автоматикой, практически невозможно переналадить на другой цикл. Однако для линий и автоматических участков, имеющих станки с ЧПУ СNС, возможность перестройки цикла и программы работы линии имеется, и такую перестройку неоднократно производят в процессе эксплуатации. При этом вся необходимая технологическая информация выдается ЭВМ.

Программирование охватывает все оборудование линии. Исходными данными для программирования являются чертеж детали и технические характеристики автоматов, входящих в состав линии.

Процесс программирования автоматических линий состоит из трех стадий:

1.  Проектирование технологического  процесса обработки детали, разработка общей схемы перемещений рабочих органов всех станков линии, расчет режимов резания, выбор режущего инструмента и специальной технологической оснастки, заполнение расчетно-технологических карт, предварительная оценка экономической эффективности. Эта стадия выполняется для оборудования, в котором нет готовых программ обработки.

2.  Составление алгоритма и  математическое описание всех звеньев структуры технологического процесса, расчет координат и перемещений деталей или рабочих органов с учетом автоматического управления всех агрегатов.

3.  Введение алгоритма с исходными  данными и ограничениями в  систему управления станка.

Методика составления алгоритма является общей для всех автоматов линии, однако в зависимости от конкретного вида оборудования изменяется объем расчетно-технологических работ. В процессе программирования необходимо максимально сконцентрировать операции путем совмещения работы различных рабочих органов автоматов, а также тщательно проверить схему технологического процесса с целью обеспечения необходимой надежности работы линии, полностью исключив при этом случаи, когда одни рабочие механизмы могут мешать другим.

Имея схему обработки детали и ее рабочий чертеж, можно определить продолжительность рабочих и холостых ходов, время подачи команд на включение и выключение охлаждения, срабатывания магазина, очередность включения транспортных систем, последовательность включения устройств обратной связи и сигнализации и т.д.

 

Применение промышленных роботов

 

Появление и развитие промышленных роботов, безусловно, явились одним из крупнейших достижений науки и техники последних лет. Они позволили расширить фронт работ по автоматизации технологических и вспомогательных процессов, открыли широкие перспективы создания автоматических систем машин для гибкого, переналаживаемого производства.

Промышленные роботы избежали периода недоверия и недооценки, трудностей становления.  В нашей стране за короткие сроки создана целая сеть специализированных предприятий и организаций по роботостроению во многих машиностроительных и приборостроительных министерствах. Если в десятой пятилетке было выпущено около 6 тыс., в одиннадцатой — почти 50, то в двенадцатой пятилетке намечено выпустить около 100 тыс. промышленных роботов.

 

Проблемы роботостроения

Казалось бы, сочетание безусловной прогрессивности и повышенного внимания должно было обеспечить триумфальное шествие роботов, их весомый вклад в решение задач интенсификации производства, сокращения ручных работ и т. п. Однако пока этого не происходит.

Роботизация производства переживает сейчас серьезный кризис, который выражается в явном несоответствии между затратами сил и средств, с одной стороны, и реальной их отдачей—с другой. И кризис вызван не какими-то вдруг открывшимися недостатками промышленных роботов, а допущенными просчетами в осуществлении технической политики в области роботизации.

 Согласно проведенному анализу  в Англии 44 % фирм, занявшихся роботизацией производства, объявили о неудачах, и цифра эта представляется скорее заниженной, потому что далеко не всякая фирма отважится признаться в своих просчетах. Половина из указанных фирм объявила о прекращении работ по роботизации производства.

Создавшаяся в настоящее время ситуация обусловлена комплексом объективных и субъективных факторов.

Идет становление принципиально нового научно-технического направления, и трудности и неудачи здесь неизбежны. Промышленные роботы имеют слишком короткую историю, чтобы обладать одними достоинствами и не иметь недостатков в конструкциях и практике применения.

Однако дело не только в этом. На протяжении длительного времени промышленные роботы рассматривались с позиций не действенного средства повышения эффективности производства, а лишь как некий эквивалентный заменитель человека на производстве, призванный высвободить его от монотонных и тяжелых, непривлекательных ручных работ.

Безусловно, эта красивая легенда, обещавшая одним махом избавить рабочих от ручного труда, а руководителей от множества забот и трудностей в случае немедленного приобретения и применения в большом количестве роботов, оказалась в определенный момент необыкновенно привлекательной. Она искусно стимулировалась промышленными фирмами, вложившими немало средств в организацию выпуска промышленных роботов, подогревалась средствами массовой информации.

Разумеется, концепция «очеловечивания» промышленных роботов сыграла определенную положительную роль на ранних этапах роботостроения благодаря простоте и наглядности, особенно для тех, кто не знал глубоко тонкости производства, но обладал правом решать. Это помогало становлению нового направления, убирало многие препятствия с пути немногих в то время энтузиастов, ускоряло разработки, создание первых поколений конструкций.

Но впоследствии, когда промышленные роботы стали выходить на широкую дорогу производственного применения, именно концепция «робот заменяет человека» в отрыве от конечных задач и остального арсенала технических средств производства явилась источником множества трудностей и неудач сегодняшнего дня.

Прежде всего она глубоко ошибочна в сущности. Робот не может заменить человека. Человека может заменить лишь другой человек, желательно более сильный, квалифицированный, добросовестный.

В разнообразии функций и возможностей, подвластных человеку, в том числе в сфере производства, роботы в состоянии взять на себя лишь считанное число функций, которые во многих случаях не превышают возможности таких традиционных средств механизации и автоматизации, как ленточные транспортеры, вибрационные загрузочные устройства, обычные манипуляторы с цикловым управлением, которые известны уже десятки лет. Более того, все те отличительные свойства по сравнению с человеком, которые мы восторженно приписываем промышленным роботам, на самом деле обычные свойства любых технических средств производства. Ленточный транспортер тоже заменяет человека, высвобождая его от тяжелого ручного труда, вообразите себе армаду, грузчиков с мешками на плечах, бегущих рысью через весь цех. Ленточный транспортер не курит, не прогуливает и не требует квартиры для семьи или места в детском саду, но никому в голову не приходило подобными аргументами обосновывать применение данных транспортеров, например, по сравнению с цепными конвейерами.

Сложившееся у широких слоев населения под влиянием средств массовой информации идеализированное представление о роботах, которые якобы способны полностью заменить людей на производстве и позволяют в кратчайшие сроки осуществить «технологическую революцию», перестроить основы промышленного производства и т. и., не отражает реального положения дел. В действительности же осуществляемое быстрыми темпами массовое внедрение роботизированных систем во многом дестабилизировало промышленное производство и породило немало серьезных проблем. Это произошло потому, что реальные возможности роботов были преувеличены и некоторые образцовые примеры преподносились как типичные. Такое упрощенное и неточное представление о роботах небезвредно хотя бы потому, что маскирует проблемы, с которыми приходится сталкиваться на практике, и может побудить потребителей сделать необоснованный выбор.

Превратное понимание роботизации, нацеливание ее не на решение коренных проблем повышения эффективности производства (качество, производительность, себестоимость), а лишь на имитацию некоторых ручных действий человека в надежде, что все остальное приложится, тоже не столь безобидны, как это может показаться.

Во-первых, отсюда лишь один шаг до роботизации ради самой роботизации. И как следствие—разочарование и дискредитация, потому что производство с его суровыми законами неизбежно отторгает дорогие, тихоходные и малонадежные конструкции. Во-вторых, и сами разработчики, действуя по принципу «лишь бы робот, лишь бы манипулировал», начинают искать самые легкие, а не самые эффективные пути.

Ведь с точки зрения возможностей повышения эффективности производства , различные типы роботов далеко не равнозначны. Так, их применение на операциях сварки, окраски, нанесения гальванопокрытий, очистки позволяет существенно повышать качество продукции, прежде всего за счет стабилизации технологических режимов. Производительность оборудования повышается здесь за счет «многорукости», быстродействия, увеличенной грузоподъемности, человек полностью выводится из рабочей зоны и избавляется от труда в неблагоприятной среде.

В то же время при загрузке металлорежущих станков промышленные роботы на качество изделий не влияют. По производительности оборудования, как правило, получается проигрыш, так как ручная загрузка деталей массой до 3—5 кг выполняется человеком в несколько раз быстрее. Следовательно, выигрыш можно получить лишь по фонду заработной платы, да и то незначительный, так как один рабочий обслуживает 2—3 станка с ЧПУ и без роботов. Почему же тогда подавляющее большинство разработок адресуется не сварке, окраске, гальванопроизводству, а загрузке металлорежущих станков или прессов, т.е. наименее перспективным направлениям? Ответ один — если подходить к роботизации как к задаче имитации действий человека, то так проще, легче, удобнее.

Длительное время большинство промышленных роботов создавалось как конструкции напольного типа, что явилось следствием вольного или невольного подражания человеку, который стоя обслуживает станок.

Практика сегодняшнего дня развеивает подобные иллюзии. На сегодняшний день потенциально эффективными являются, прежде всего, роботы для точечной и шовной сварки, в том числе в автомобильной промышленности. Но и здесь опыт внедрения говорит о тяжелом и сложном процессе повышения мобильности роботов, их быстродействия и надежности в работе, который необходимо пройти, пока потенциальные возможности не станут реальностью.

По сравнению с традиционными поточными и автоматическими сварочными линиями автомобильной промышленности роботизированные комплексы должны по идее обеспечивать значительно большую гибкость работы оборудования: при переходе к выпуску любой новой модели автомобиля в принципе достаточно ввести необходимые изменения в программу, с помощью которой осуществляется управление роботом. В действительности, однако, столь гибкие системы пока еще не существуют. На сегодняшний день роботизированные комплексы приспособлены к выпуску весьма ограниченного числа видов продукции. Если, например, квалифицированному рабочему для перехода от одной производственной операции к другой практически требуется всего несколько секунд, то перепрограммирование роботов или при наличии требуемой программы их переналадка в связи с переходом к производству автомобиля с другим типом кузова, хотя и прежней модели, представляет собой достаточно сложный процесс. Реальные сдвиги в этой области произойдут лишь с внедрением в производство новых поколений промышленных роботов, обладающих значительно большим объемом «памяти», и с разработкой более совершенных языков программирования. Достаточно малейшей неисправности одного из роботов, и работа на всей линии автоматически прекращается. Оборудование, таким образом, простаивает, причем зачастую при определении причины отказа и степени серьезности неисправности представители ремонтных служб делают неточные заключения и прогнозы, завышая или занижая предполагаемые затраты времени, необходимого для устранения неисправности.

Не случайно поэтому на многих промышленных предприятиях в конце каждой конвейерной линии дополнительно устанавливают оборудование, позволяющее выполнять вручную те операции, которые не смог осуществить тот или иной вышедший из строя робот. Подобные действия, в результате которых доля ручного труда на роботизированных участках в короткий срок возрастает до 30—40 °/о, нередко становятся поводом для серьезных проблем.

Информация о работе Автоматизация процессов получения заготовок, изготовления деталей и сборки изделия