Автоматизация теплового пункта гражданского здания

Автор работы: Пользователь скрыл имя, 14 Марта 2013 в 07:44, дипломная работа

Краткое описание

В настоящем дипломном проекте были проанализированы существующие схемы отопительных тепловых пунктов гражданских зданий с нагрузками отопления и горячего водоснабжения. А также была разработана функционально-технологическая схема автоматизированного теплового пункта и выбраны соответствующее технологическое оборудование и средства автоматизации для автоматизации теплового пункта гражданского здания.

Прикрепленные файлы: 1 файл

Диплом автоматизация теплового пункта гражданского здания.doc

— 651.50 Кб (Скачать документ)

 

Таблица 2.5 – Технические характеристики регулирующих клапанов для систем отопления и горячего водоснабжения

Технические параметры  клапана

Значения

Вид тепловой нагрузки

система отопления

система ГВС

Тип

VF 2

dP клапана, бар

0,0852

0.0962245

Доля потерь давления на клапане

0,42

0,48

Условный проход, мм

40

50

Максимальная пропускная способность, м3

25

40

Макс. рабочее давление, бар

16

Среда

циркуляционная вода

Альтернативная среда 1

50% гликолевый раствор

Тмин, °C

минус 10

Тмакс, °C

130

Количество ходов

двухходовой

Позиция шпинделя

Нет

Тип присоединения

фланцевый

Материал клапана

серый чугун EN-GJL-250 (GG-25)

Ход штока, мм

15

Характеристика регулирования

логарифмическая

Фактор кавитации

0,5

Относительный диапазон регулирования

Min. 100:1

Протечка (макс.)

макс. 0,05 % kvs

Разгруженный по давлению

нет

Примечание

максимальное рабочее давление для воды 16 бар при 120 °C

Технические параметры  клапана

Значения

Вид тепловой нагрузки

система отопления

система ГВС

Внешний вид

   

 

 

Таблица 2.6 – Информация о электроприводах к регулирующим клапанам контуров отопления и ГВС

Технические параметры электропривода

Численные значения

Вид тепловой нагрузки

Система отопления

Система ГВС

Тип

AMV 15

AMV 25

Время перемещения штока, с

165

dP макс, кПa

100

900

Функция безопасности

Нет

Напряжение, В

230

Частота, Гц

50

Потребляемая мощность, Вт

2,15

Класс защиты корпуса

54 IP

Управление сигналом

трехпозиционным

Развиваемое усилие, Н

500

1000

Макс. ход штока, мм

15

Время перемещения штока, с/мм

11 

Время поворота на 90°, с

0

Функция безопасности

0

Ручное управление

Да

С опускной (возвратной) пружиной

Нет

С подъёмной пружиной

Нет

Скорость перемещения  штока

нормальный

Тмин окр. среды, °C

Тмакс окр. среды, °C

55 

Т мин хранения и транспортировки, °C

минус 40 


 

Окончание таблицы 2.6

Технические параметры  электропривода

Численные значения

Вид тепловой нагрузки

Система отопления

Система ГВС

Тмакс хранения и транспортировки, °C

70 

Примечание

Не допускается установка  под клапаном. Макс. температура  среды 150°C (200°C с адаптером или  при горизонтальной установке).

Внешний вид

   

 

2.2.2.3 Выбор теплообменника для системы горячего водоснабжения

Тепловые пункты могут  оснащаться водоподогревателями на базе пластинчатых теплообменников  фирмы «Danfoss», которые разработаны  специально для систем централизованного  теплоснабжения. Основой теплообменника являются профилированные тонколистовые пластины из нержавеющей стали различных размеров, которые собираются в пакеты в зависимости от индивидуальных теплотехнических, гидравлических и конструктивных требований к водоподогревателю. В зависимости от технологии изготовления теплообменники могут быть паяными или разборными

Паяные теплообменники бывают одноходовыми и двухходовыми, в которые вода поступает последовательно  через две секции подогревателя, выполненного в едином блоке. Эти  теплообменники компактны, надежны, легки, но не подлежат ремонту или модернизации. Очистка паяного теплообменника производится методом промывки специальным раствором с использованием установки BOY-C-30.

Разборные теплообменники изготавливаются, как правило, в  одноходовом исполнении и позволяют видоизменять подогреватель (наращивать или уменьшать поверхность теплообмена), производить его ремонт (заменять пластины или прокладки), механически чистить пластины в процессе эксплуатации, однако они более громоздкие и дорогие.

Общепринятых рекомендаций по области применения неразборных или разборных пластинчатых теплообменников нет. Общим подходом является применение разборных конструкций при теплоносителе плохого качества. В то же время, неразборные теплообменники предпочтительнее для большинства случаев применения по экономическим показателям. Кроме того, они прочнее разборных теплообменников. К тому же большинство из них имеют меньший вес и размеры.

Теплообменник для системы  горячего водоснабжения выбирается программой «Heat Exchanger Calculation Tool» производства фирмы «Danfoss». В программу вводится максимально часовая мощность системы горячего водоснабжения, расход горячей воды и температуры входящей и выходящей из теплообменника сетевой воды. Пользовательский интерфейс программы приведен на рисунке 2.7. Технические параметры выбранного теплообменника приведены в таблице 2.7. Габаритные размеры теплообменника показаны на рисунке 2.8.

 

Таблица 2.7 – Параметры теплообменника для системы ГВС

Технические параметры  теплообменника

Значения

Тип теплообменника

XG 10-1 30

Мощность, КВт.

362,8

 

первичная сторона

вторичная сторона

Расход, м3

12,772

5,829

Входная температура,°C

95

5

Выходная температура, °C

70

58,9

Деств. обр. темп.

70

 

LMTD

49,1

 

Потери напора, бар

3,42

0,741

Скорость, м/с

6,1

2,8

Скорость, м/с

1,049

0,447

Число/Контур

14

15

Объем воды, л.

0,63

0,68

Технические параметры  теплообменника

Значения

 

первичная сторона

вторичная сторона

Максимально допустимое давление, бар

16

Максим. допустимая температура, 0С

150

Запас поверхности, %

0,00

Поверхность теплообмена, м2

0,60

Вес, кг

22,0


 

A – 76 мм. B – 158 мм. C – 65 мм. D - 235 мм. E - 188 мм. F – 460 мм. Lmax – 500мм.

T11 на входе греющего контура

T12 на выходе греющего контура

T21 на входе нагреваемого контура

T22 на выходе нагреваемого контура

 

2.2.2.4 Выбор  циркуляционных насосов для контуров  отопления и горячего водоснабжения

Насос является основным элементом водяной инженерной системы  здания. Его работа полностью взаимосвязана  со всем оборудованием системы, в том числе и запорно-регулирующей арматурой. От их совместной работы зависит эффективность функционирования всей системы. Особенно это касается систем с переменным гидравлическим режимом, где регулирование расходом теплоносителя приводит к изменению гидравлических и электрических параметров насоса.

Подбирают насос по расчетному расходу и потерям давления в  системе при частично закрытых терморегуляторах

Для системы отопления  следует выбрать насос с расчетным  расходом теплоносителя более 7,2524 м3/ч. и напором насоса больше 9 м. Допустимая температура перекачиваемой среды насоса до 1000С.

Параметры циркуляционного  насоса Wilo TOP-S 30/10 EM достаточны для применения его в системе отопления. Внешний вид насоса Wilo TOP-S 30/10 EM показан на рисунке 2.9.

Циркуляционный насос с резьбовым соединением Wilo TOP-S 30/10 EM применяется в системах охлаждения, водяного отопления, кондиционирования.

К основным достоинствам можно отнести простой монтаж, надежность в работе, три ступени  частоты вращения. Насос состоит  из чугунного корпуса, вала из нержавеющей стали и рабочего колеса, изготовленного из композитных материалов. Допустимые перекачиваемые жидкости: вода систем отопления и водогликолевая смесь. Данные циркуляционного насоса Wilo TOP-S 30/10 EM для контура отопления получены из сайта http://www.pompa.kiev.ua/find_goods.php.

Основные технические  характеристики:

напор макс……………………………...……………………………11 м.

расход макс……………………………………….……………….11 м3/ч.

подключение к сети………...………………….……….. 1~230 В, 50 Гц

температура перекачиваемой среды…….....от минус 10°С до + 130°С

рабочее давление макс………........…………...……….……….10 бар

трубное соединение………….…...……………………………… Rp11/4

Для системы горячего водоснабжения насос необходимо выбирать по расчетному расходу потребляемой горячей воды, который является равным 1,75м3/ч. и по падению давления в системе горячего водоснабжения 0,6 атм. Этим требованиям отвечают технические характеристики насоса Wilo Star-Z 20/7 CircoStar. Внешний вид выбранного насоса показан на рисунке 2.10.

Циркуляционный насос системы горячего водоснабжения Wilo Star-Z 20/7 CircoStar. применяется для системы циркуляции горячей питьевой воды. К основным особенностям можно отнести три ступени частоты вращения, возможность использования в системах отопления до 110 0С. Допустимые перекачиваемые жидкости - питьевая вода и вода для пищевых производств. Насос устойчив к коррозии. Мотор не требует дополнительной защиты [12].

Насос изготовлен из керамического  вала и бронзового корпуса, рабочее  колесо изготовлено из композитных  материалов. Данные циркуляционного насоса Wilo TOP-S 30/10 EM для контура горячего водоснабжения получены из сайта http://www.pompa.kiev.ua/find_goods.php.

 

Основные технические  характеристики насоса:

напор макс………………….………………..………………………..6 м.

расход макс…………..………………………….……………..5,5 м3/ч.

подключение к сети…..…………………………….1~230 В, 50 Гц

минимальный подпор во всасывающем  патрубке……0,5 м при (+50°С)

температура жидкости в  системах ГВС ……....до 65°С (2ч. до +70°С)

рабочее давление макс………………..……………………….. 10 бар

подсоединение к трубопроводу…..………………………….. Rp 3/4"

монтажная длинна……………….………………………………150 мм.

вес………………..……………………………………………... 2,3 кг.

 

2.2.2.5 Выбор  шаровых кранов для контуров  отопления и ГВС

Для подключения к  теплосети систем отопления и  горячего водоснабжения применяют специально предназначенную группу шаровых кранов типа JIP, обеспечивающих высокую степень безопасности. Они выполнены полностью из стального сварного корпуса и отвечают всем требованиям, которые предъявляют к современной арматуре. Краны снабжены уникальным уплотнением штока с применением фторопласта, что гарантирует герметичность и повышенную цикличность даже при высоких и изменяющихся температурах теплоносителя. В кране применена самообжимная конструкция шара за счет специальной пружины с двумя кольцами из армированного углеволокном фторопласта. Этим обеспечено герметичное запирание потока теплоносителя и оптимальное требуемое усилие для поворота шара. Краны выполняют под резьбовое, фланцевое, сварное или комбинированное присоединения (с одной стороны фланец или резьба, с другой – патрубок под сварку). Для этого используют специальные свёрла. Главная особенность такого крана, кроме применения термоустойчивых уплотнителей, состоит в недопущении какого либо негативного влияния температуры и давления теплоносителя на шар и уплотнители. Внешний вид и габаритные размеры шарового крана типа Х1666 приведены на рисунке 2.11. Технические характеристики шарового крана приведены в таблице 2.8.

Информация о работе Автоматизация теплового пункта гражданского здания