Автоматизация теплового пункта гражданского здания

Автор работы: Пользователь скрыл имя, 14 Марта 2013 в 07:44, дипломная работа

Краткое описание

В настоящем дипломном проекте были проанализированы существующие схемы отопительных тепловых пунктов гражданских зданий с нагрузками отопления и горячего водоснабжения. А также была разработана функционально-технологическая схема автоматизированного теплового пункта и выбраны соответствующее технологическое оборудование и средства автоматизации для автоматизации теплового пункта гражданского здания.

Прикрепленные файлы: 1 файл

Диплом автоматизация теплового пункта гражданского здания.doc

— 651.50 Кб (Скачать документ)

9



Введение

 

Системы теплоснабжения являются крупнейшим потребителем топливно-энергетических ресурсов в стране. От нормального функционирования этих систем зависят условия теплового комфорта в отапливаемых зданиях самочувствие людей, производительность труда и т.д. Выпуск качественной продукции на ряде промышленных предприятии требует строгого соблюдения нормируемых параметров микроклимата. Эффективность предприятий агропромышленного комплекса (урожайность плодов и овощей, выращиваемых в теплицах, продуктивность животноводства) также в большой степени определяется температурно-влажностными режимами в сельскохозяйственных помещениях, обеспечиваемыми работой систем теплоснабжения. Таким образом, проблема повышения качества, надежности, экономичности теплоснабжения имеет государственное значение [1].

Режимы теплопотребления, а следовательно и производства тепловой энергии, зависят, как известно, от большого количества факторов; условий  погоды, теплотехнических качеств отапливаемых зданий и сооружений, характеристик тепловой сети и источников энергии и др. При выборе этих режимов нельзя не учитывать функциональных взаимосвязей системы теплоснабжения с другими системами инженерного обеспечения: электро-, газо-, водоснабжения.

Внедрение автоматизированных систем управления технологическими процессами в практику теплофикации и централизованного теплоснабжения позволяет резко повысить технический уровень эксплуатации этих систем и обеспечить значительную экономию топлива. Кроме экономии топлива, автоматизация рассматриваемых систем позволяет улучшить качество отопления зданий, повысить уровень теплового комфорта и эффективность промышленного и сельскохозяйственного производства в отапливаемых зданиях и сооружениях, а также надежность теплоснабжения при уменьшении численности обслуживающего персонала.

Применение системы  автоматического программного регулирования  отопления позволяет осуществлять дальнейшее совершенствование режима отопления, например, снижать температуру  воздуха в жилых зданиях в  ночное время или снижать отпуск теплоты на отопление промышленных и административных зданий в нерабочее время, что обеспечивает дополнительную экономию теплоты и создание комфортных условий [2].

 

1. Автоматические системы энергосбережения в зданиях мегаполисов

 

Согласно закону Республики Казахстан «Об энергосбережении» понятие энергосбережение это реализация правовых, организационных, научных, производственных, технических и экологических мер, направленных на эффективное использование энергетических ресурсов и на вовлечение в оборот возобновляемых источников энергии.

Важными направлениями в законе «Об энергосбережении» РК являются:

- оптимизация режимов производства и потребления энергии, организация её учета и контроля;

- реализация проектов по внедрению энергоэффективной техники и продукции, передовых технологий.

Одним из способов обеспечения  более экономичного и эффективного использования энергетических ресурсов в жилищно-коммунальном хозяйстве (ЖКХ) является автоматизация инженерных систем жилых зданий. В основе концепции  систем централизованного интеллектуального управления зданием лежит новый подход к организации системы жизнеобеспечения здания, при котором за счет комплекса программно-аппаратных средств значительно возрастает эффективность функционирования и надежность управления всеми инженерными системами и исполнительными устройствами здания. Данный подход позволяет за счет интеграции информации, поступающей от всех эксплуатируемых подсистем (информационных сетей, электроснабжения, систем отопления и вентиляции, охранно-пожарной сигнализации и видеонаблюдения, систем водоснабжения, канализации), получить возможность оперативного доступа к информации о состоянии всех подсистем здания, отображая ее в удобной и понятной форме. "Централизованные системы интеллектуального управления зданием" помогают эффективно управлять инженерными системами здания - сократить затраты на эксплуатацию и операционные затраты, повысить комфортность и безопасность пользователей, оптимизировать производственные процессы, обеспечить безопасность людей, а также дорогостоящего оборудования и имущества.

 

1.1 Современное  здание как объект комплексной  автоматизации

 

Комплексная автоматизация здания это новая отрасль АСУ ТП, так как все системы автоматического управления до сегодняшнего дня выполнялись для промышленных предприятий. В настоящее время в нашей стране строительство является локомотивом индустрии, соответственно можно представить комплексную автоматизацию здания как важную часть строительства.

Поддержание в здании нормальных жизненных условий, обеспечение его безопасности и защищенности от внештатных ситуации обеспечивают множество технологических систем, каждая из которых характеризуется большим набором параметров и сигналов управления. Все они в совокупности образуют то, что называется системой жизнеобеспечения здания.

В сегодняшние здания устанавливают от 25 до 50 и более  разнородных систем жизнеобеспечения, которые отличаются не только назначением  и выполняемыми функциями, но и принципами работы: электрические, механические, транспортные, электронные, гидравлические и т.д. Каждая из этих систем поставляется производителем, как правило, в виде комплекта оборудования, на базе которого можно создать законченное решение с собственной системой контроля и управления [3].

Для управления всеми  этими системами организуется диспетчерский пункт (один или несколько), находящийся на котором диспетчер постоянно получает информацию о состоянии всех узлов системы жизнеобеспечения и имеет возможность при необходимости подать необходимые сигналы управления. Проблема заключается в том, что число параметров контроля и управления для многоэтажного здания может достигать нескольких тысяч, поэтому недопустим применяемый для небольших объектов подход, при котором автоматизация контроля и управления строится на отдельных локальных контроллерах, встроенных в оборудование или смонтированных отдельно и не связанных в единый комплекс.

Для того чтобы все  эти разрозненные инженерные системы  работали в едином комплексе, осуществляли между собой обмен данными, контролировались и управлялись из единой диспетчерской, главным звеном интеллектуального здания - является система управления зданием (BMS – Building Management System).

Система управления зданием, которую называют еще и системой автоматизации и диспетчеризации  инженерного оборудования, является ядром интеллектуального здания и представляет собой аппаратно-программный комплекс, осуществляющий сбор, хранение и анализ данных от различных систем здания, а также управление работой этих систем через сетевые контроллеры (процессоры).

Интеллектуальные сетевые  контроллеры, использующие открытые протоколы  и стандарты передачи данных LonWork и BACNet, осуществляют контроль и управление работой подведомственных им инженерных систем, а также обмен данными  с другими сетевыми контроллерами  системы управления зданием. На основе собранной информации сетевые контроллеры автономно посылают управляющие команды на контроллеры инженерных систем в рамках заложенных в них алгоритмов реакции на события в штатных или нештатных ситуациях.

Такая архитектура системы управления зданием позволяет:

- в автоматическом режиме управлять работой систем вентиляции, кондиционирования, отопления, освещения и др., обеспечивая в каждом помещении наиболее комфортные условия для персонала по температуре, влажности воздуха и освещенности;

- получать объективную информацию о работе и состоянии всех систем и своевременно сообщать диспетчерам о необходимости вызова специалистов по сервисному обслуживанию в случае отклонения параметров любой из систем от штатных показателей;

- контролируя максимально возможное число параметров оборудования, точек контроля в здании и показателей загруженности систем, перераспределять энергоресурсы между системами, обеспечивая их эффективное использование и экономию энергоресурсов;

- ввести оптимальный режим управления инженерным оборудованием с целью сокращения затрат на использование энергоресурсов, потребляемых инженерными системами здания (горячей и холодной воды, тепла, электроэнергии, чистого воздуха и т.д.);

- обеспечить централизованный контроль и управление при нештатных ситуациях:

- осуществлять своевременную локализацию аварийных ситуаций;

- оперативно принимать решения при аварийных и нештатных ситуациях (пожаре, затоплении, утечках воды, газа, несанкционированном доступе в охраняемые помещения);

- ввести объективный анализ работы оборудования, действий инженерных служб и подразделений охраны при нештатных ситуациях на основе информации автоматизированных баз данных, документирующих все принятые решения и многое другое.

Используя открытые протоколы обмена данными между различными системами здания, структурированные кабельные и LAN/WAN сети, сетевые контроллеры системы управления зданием позволяют создать инженерную инфраструктуру, которая имеет высокую степень открытости для наращивания и быстрой модернизации инженерных систем. В максимальной конфигурации система управления зданием сможет осуществлять централизованный мониторинг оборудования и управление следующими инженерно-техническими системами и комплексами:

Система электрораспределения:

- системы гарантированного и бесперебойного электроснабжения;

- системы освещения (комнатные, коридорные, фасадные и аварийные);

- система вентиляции;

- система отопления;

- система горячего и холодного водоснабжения;

- системы канализации и дренажные системы;

- система оперативной связи и видеоконференций;

- система воздухоподготовки, очистки и увлажнения;

- система холодоснабжения

- система кондиционирования и климат-контроля;

- система контроля загазованности.

Транспортные системы:

- системы учета и контроля расходования ресурсов;

- система охранно-пожарной сигнализации;

- система противопожарной защиты и пожаротушения;

- система охранного видеонаблюдения;

- система контроля и управления доступом;

- система управления паркингом;

- метереологическая система;

- система часофикации.

Применение системы  управления зданием удорожает общую  стоимость инженерии здания на 20-50 долларов США на 1 квадратный метр общей  площади здания и зависит от размеров здания и технических требований к работе инженерных систем. Для зданий площадью 15 000 кв. м. и более удорожание составляет $20 на 1 кв. м. Для зданий с меньшей площадью эта цифра увеличивается. Все приведенные оценки сделаны без учета стоимости самого инженерного оборудования, которое использует открытые протоколы обмена данными и будет установлено в здании.

В то же время, применение BMS и ресурсосберегающего оборудования позволяет:

- вписаться в ограниченные энергомощности и исключить расходы на строительство дополнительной подстанции и прокладку силовых кабелей, особенно в центральных частях города, где муниципальные власти ограничивают владельцев зданий в объемах энергопотребления;

- сократить расходы на дорогостоящие ремонт и замену вышедшего из строя оборудования, продлить срок его службы за счет постоянного мониторинга параметров инженерных систем и своевременного проведения наладочных работ при выявлении отклонений параметров систем от нормы;

- снизить на 20% ежемесячные коммунальные платежи (вода, тепло, канализация, электроснабжение) за счет работы систем в наиболее экономном режиме и автоматического перевода инженерии здания из дневного в ночной режим работы (когда автоматически отключается освещение, кондиционеры, снижается температура отопительных батарей в комнатах, персонал которых покинул здание);

- сократить в 3 раза расходы на службу эксплуатации, поскольку большинство систем будет работать в автоматическом режиме, что снижает расходы на ремонт или замену дорогостоящего оборудования, вышедшего из строя по причине халатности персонала или ошибок оператора;

- исключить расходы на интеллектуальную надстройку систем здания при расширении числа инженерных систем и их модернизации за счет использования возможностей открытой архитектуры системы управления здания;

- снизить заболеваемость сотрудников за счет создания комфортных условий для их работы и, как следствие, сократить расходы на реабилитацию сотрудников и страховые выплаты.

Помимо значительного  снижения численности персонала, обслуживающего инженерные системы здания, за счет максимальной автоматизации процессов управления и контроля работы систем жизнеобеспечения, владелец интеллектуального здания может рассчитывать на получение следующих выгод:

- увеличится в 2 раза срок бесперебойной работы инженерных систем за счет автоматического поддержания оптимальных условий работы оборудования;

- при возникновении аварийных ситуаций операторы, осуществляющие контроль работы оборудования, будут иметь полную информацию о работе каждой системы и рекомендации BMS по выбору оптимального и наиболее безопасного выхода из ситуации. При этом большая часть задач будет решать автоматика здания;

- при появлении сбоев в работе оборудования BMS будет своевременно информировать службы эксплуатации, отвечающие за работу данного оборудования, а также главную службу эксплуатации и смежные подразделения. Иными словами, если оператор системы электроснабжения уснул на рабочем месте и BMS не видит его реакции на тревожные сообщения, то она отправляет тревогу главному диспетчеру;

Информация о работе Автоматизация теплового пункта гражданского здания