Коммутация пакетов. Общая характеристика способа коммутации пакетов

Автор работы: Пользователь скрыл имя, 09 Сентября 2014 в 18:44, реферат

Краткое описание

Технология взаимодействия в сети сводится к передаче информации - коммутации.
В общем случае решение каждой из задач коммутации - определение потоков и соответствующих маршрутов, фиксация маршрутов в конфигурационных параметрах и таблицах сетевых устройств, распознавание потоков и передача данных между интерфейсами одного устройства, мультиплексирование и демультиплексирование потоков и разделение среды передачи - зависит от решения остальных. Комплекс технических решений обобщенной задачи коммутации в своей совокупности составляет базис любой сетевой технологии.

Прикрепленные файлы: 1 файл

Коммутация пакетов.docx

— 312.89 Кб (Скачать документ)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ СОЦИАЛЬНЫЙ УНИВЕРСИТЕТ»

КУРСКИЙ ИНСТИТУТ СОЦИАЛЬНОГО ОБРАЗОВАНИЯ

(ФИЛИАЛ) РГСУ

 

Инженерно-технический факультет

Кафедра информационных систем и информационного права

 

РЕФЕРАТ

по дисциплине: «Инфокоммуникационные системы и сети»

 

на тему: «Коммутация пакетов. Общая характеристика способа коммутации пакетов. Принципы коммутации пакетов. Виртуальные каналы в сетях с коммутацией пакетов»

 

 

 

 

 

Выполнила студентка 3 курса

специальности «Информационные системы и технологии»  очной формы обучения 

 

Безгина А.В.

 

Проверил: Краснокутская Л.Н.

 

 

Реферат защищен с оценкой

_______________

«__»_______20__г.

 

   

 

 

 

 

 

Курск 2014г.

Содержание

 

 

 

 

ВВЕДЕНИЕ

Технология взаимодействия в сети сводится к передаче информации - коммутации.

В общем случае решение каждой из задач коммутации - определение потоков и соответствующих маршрутов, фиксация маршрутов в конфигурационных параметрах и таблицах сетевых устройств, распознавание потоков и передача данных между интерфейсами одного устройства, мультиплексирование и демультиплексирование потоков и разделение среды передачи - зависит от решения остальных. Комплекс технических решений обобщенной задачи коммутации в своей совокупности составляет базис любой сетевой технологии. От того, какой механизм прокладки маршрутов, продвижения данных и совместного использования каналов связи заложен в той или иной сетевой технологии, зависят ее фундаментальные свойства.

Среди множества возможных подходов к решению задачи коммутации абонентов в сетях выделяют два основополагающих:

1.коммутация каналов (circuit switching);

2.коммутация пакетов (packet switching).

Внешне обе эти схемы соответствуют приведенной общей структуре сети, однако возможности и свойства их различны.

Внешне обе эти схемы соответствуют приведенной на рис. 1 структуре сети, однако возможности и свойства их различны.

Рис. 1. Общая структура сети с коммутацией абонентов

Сети с коммутацией каналов имеют более богатую историю, они ведут свое происхождение от первых телефонных сетей. Сети с коммутацией пакетов сравнительно молоды, они появились в конце 60-х годов как результат экспериментов с первыми глобальными компьютерными сетями. Каждая из этих схем имеет свои преимущества и недостатки, но по долгосрочным прогнозам многих специалистов будущее принадлежит технологии коммутации пакетов, как более гибкой и универсальной.

 

КОММУТАЦИЯ ПАКЕТОВ. ОБЩАЯ ХАРАКТЕРИСТИКА

Под коммутацией в сетях передачи данных понимается совокупность операций, обеспечивающих в узлах коммутации передачу информации между входными и выходными устройствами в соответствии с указанным адресом.

Коммутация пакетов - это особый способ коммутации узлов сети, который специально был создан для наилучшей передачи компьютерного трафика (пульсирующего трафика). Первые шаги на пути создания компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Типичные сетевые приложения генерируют трафик очень неравномерно, с высоким уровнем пульсации скорости передачи данных. Например, при обращении к удаленному файловому серверу пользователь сначала просматривает содержимое каталога этого сервера, что порождает передачу небольшого объема данных. Затем он открывает требуемый файл в текстовом редакторе, и эта операция может создать достаточно интенсивный обмен данными, особенно если файл содержит объемные графические включения. После отображения нескольких страниц файла пользователь некоторое время работает с ними локально, что вообще не требует передачи данных по сети, а затем возвращает модифицированные копии страниц на сервер — и это снова порождает интенсивную передачу данных по сети.

Коэффициент пульсации трафика отдельного пользователя сети, равный отношению средней интенсивности обмена данными к максимально возможной, может достигать 1:50 или даже 1:100. Если для описанной сессии организовать коммутацию канала между компьютером пользователя и сервером, то большую часть времени канал будет простаивать. В то же время коммутационные возможности сети будут закреплены за данной парой абонентов и будут недоступны другим пользователям сети.

При коммутации пакетов сообщение передается по виртуальному каналу связи, но оно разделяется на пакеты, при этом канал  передачи данных занят только во время передачи пакета (без нарушения его целостности) и после ее завершения освобождается для передачи пакетов. Напомним, что сообщением называется логически завершенная порция данных — запрос на передачу файла, ответ на этот запрос, содержащий весь файл и т.д. Сообщения могут иметь произвольную длину, от нескольких байт до многих мегабайт. Напротив, пакеты обычно тоже могут иметь переменную длину, но в узких пределах, например от 46 до 1500 байт.

Каждый пакет снабжается следующей служебной информацией (заголовком):

  • коды начала и окончания пакета,
  • адреса отправителя и получателя,
  • номер пакета в сообщении,
  • информация для контроля достоверности передаваемых данных в промежуточных узлах связи и в пункте назначения.

Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения.

На рис. 2 представлена схема разбиения сообщения на пакеты.

 

Рис. 2. Разбиение сообщения на пакеты

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета (рис. 2). В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсацию трафика на магистральных связях между коммутаторами и тем самым наиболее эффективно использовать их для повышения пропускной способности сети в целом.

Действительно, для пары абонентов наиболее эффективным было бы предоставление им в единоличное пользование скоммутированного канала связи, как это делается в сетях с коммутацией каналов. В таком случае время взаимодействия этой пары абонентов было бы минимальным, так как данные без задержек передавались бы от одного абонента другому. Простои канала во время пауз передачи абонентов не интересуют, для них важно быстрее решить свою задачу. Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее.

Тем не менее, общий объем передаваемых сетью компьютерных данных в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Это происходит потому, что пульсации отдельных абонентов в соответствии с законом больших чисел распределяются во времени так, что их пики не совпадают. Поэтому коммутаторы постоянно и достаточно равномерно загружены работой, если число обслуживаемых ими абонентов действительно велико. На рис. 3 показано, что трафик, поступающий от конечных узлов на коммутаторы, распределен во времени очень неравномерно. Однако коммутаторы более высокого уровня иерархии, которые обслуживают соединения между коммутаторами нижнего уровня, загружены более равномерно, и поток пакетов в магистральных каналах, соединяющих коммутаторы верхнего уровня, имеет почти максимальный коэффициент использования. Буферизация сглаживает пульсации, поэтому коэффициент пульсации на магистральных каналах гораздо ниже, чем на каналах абонентского доступа — он может быть равным 1:10 или даже 1:2.

Рис. 3. Сглаживание пульсаций трафика в сети с коммутацией пакетов

Более высокая эффективность сетей с коммутацией пакетов по сравнению с сетями с коммутацией каналов (при равной пропускной способности каналов связи) была доказана в 60-е годы как экспериментально, так и с помощью имитационного моделирования. Здесь уместна аналогия с мультипрограммными операционными системами. Каждая отдельная программа в такой системе выполняется дольше, чем в однопрограммной системе, когда программе выделяется все процессорное время, пока ее выполнение не завершится. Однако общее число программ, выполняемых за единицу времени, в мультипрограммной системе больше, чем в однопрограммной.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, но повышает пропускную способность сети в целом.

Задержки в источнике передачи:

  • время на передачу заголовков;
  • задержки, вызванные интервалами между передачей каждого следующего пакета.

Задержки в каждом коммутаторе:

  • время буферизации пакета;
  • время коммутации, которое складывается из времени ожидания пакета в очереди (переменная величина) и времени перемещения пакета в выходной порт.

 

ПРОПУСКНАЯ СПОСОБНОСТЬ СЕТЕЙ С КОММУТАЦИЕЙ ПАКЕТОВ

Одним из отличий метода коммутации пакетов от метода коммутации каналов является неопределенность пропускной способности соединения между двумя абонентами. В случае коммутации каналов после образования составного канала пропускная способность сети при передаче данных между конечными узлами известна — это пропускная способность канала. Данные после задержки, связанной с установлением канала, начинают передаваться на максимальной для канала скорости (рис. 4). Время передачи сообщения в сети с коммутацией каналов Тк.к. равно сумме задержки распространения сигнала по линии связи и задержки передачи сообщения. Задержка распространения сигнала зависит от скорости распространения электромагнитных волн в конкретной физической среде, которая колеблется от 0,6 до 0,9 скорости света в вакууме. Время передачи сообщения равно V/C, где V — объем сообщения в битах, а C — пропускная способность канала в битах в секунду.

Рис. 4. Задержки передачи данных в сетях с коммутацией каналов

В сети с коммутацией пакетов картина совсем иная.

Рис. 5. Задержки передачи данных в сетях с коммутацией пакетов

Процедура установления соединения в этих сетях, если она используется, занимает примерно такое же время, как и в сетях с коммутацией каналов, поэтому будем сравнивать только время передачи данных.

На рис. 5 показан пример передачи данных в сети с коммутацией пакетов. Предполагается, что по сети передается сообщение того же объема, что и сообщение, передаваемое на рис. 4 однако оно разделено на пакеты, каждый из которых снабжен заголовком.

Время передачи сообщения в сети с коммутацией пакетов обозначено на рисунке Тк.п. При передаче этого разбитого на пакеты сообщения по сети с коммутацией пакетов возникают дополнительные задержки. Во-первых, это задержки в источнике передачи, который, помимо передачи собственно сообщения, тратит дополнительное время на передачу заголовков tп.з., к тому же добавляются задержки tинт, вызванные интервалами между передачей каждого следующего пакета (это время уходит на формирование очередного пакета стеком протоколов).

Во-вторых, дополнительное время тратится в каждом коммутаторе. Здесь задержки складываются из времени буферизации пакета tб.п. (коммутатор не может начать передачу пакета, не приняв его полностью в свой буфер) и времени коммутации tк. Время буферизации равно времени приема пакета с битовой скоростью протокола. Время коммутации складывается из времени ожидания пакета в очереди и времени перемещения пакета в выходной порт. Если время перемещения пакета фиксировано и, как правило, невелико (от нескольких микросекунд до нескольких десятков микросекунд), то время ожидания пакета в очереди колеблется в очень широких пределах и заранее неизвестно, так как зависит от текущей загрузки сети.

Проведем грубую оценку задержки при передаче данных в сетях с коммутацией пакетов по сравнению с сетями с коммутацией каналов на простейшем примере. Пусть тестовое сообщение, которое нужно передать в обоих видах сетей, имеет объем 200 Кбайт. Отправитель находится от получателя на расстоянии 5000 км. Пропускная способность линий связи составляет 2 Мбит/c.

Время передачи данных по сети с коммутацией каналов складывается из времени распространения сигнала, которое для расстояния 5000 км можно оценить примерно в 25 мс (принимая скорость распространения сигнала равной 2/3 скорости света), и времени передачи сообщения, которое при пропускной способности 2 Мбит/c и длине сообщения 200 Кбайт равно примерно 800 мс. При расчете корректное значение К (210), равное 1024, округлялось до 1000, аналогично значение М (220), равное 1048576, округлялось до 1000000. Таким образом, передача данных оценивается в 825 мс.

Ясно, что при передаче этого сообщения по сети с коммутацией пакетов, обладающей такой же суммарной длиной и пропускной способностью каналов, пролегающих от отправителя к получателю, время распространения сигнала и время передачи данных будут такими же — 825 мс. Однако из-за задержек в промежуточных узлах общее время передачи данных увеличится. Давайте оценим, на сколько возрастет это время. Будем считать, что путь от отправителя до получателя пролегает через 10 коммутаторов. Пусть исходное сообщение разбивается на пакеты в 1 Кбайт, всего 200 пакетов. Вначале оценим задержку, которая возникает в исходном узле. Предположим, что доля служебной информации, размещенной в заголовках пакетов, по отношению к общему объему сообщения составляет 10%. Следовательно, дополнительная задержка, связанная с передачей заголовков пакетов, составляет 10% от времени передачи целого сообщения, то есть 80 мс. Если принять интервал между отправкой пакетов равным 1 мс, то дополнительные потери за счет интервалов составят 200 мс. Таким образом, в исходном узле из-за пакетирования сообщения при передаче возникла дополнительная задержка в 280 мс.

Информация о работе Коммутация пакетов. Общая характеристика способа коммутации пакетов