Контрольная работа по предмету "Концепции современного естествознания"

Автор работы: Пользователь скрыл имя, 14 Января 2013 в 09:37, контрольная работа

Краткое описание

1. В древних цивилизациях уже существовали люди, которые хотели знать, как на самом деле устроен мир. Эти мыслители в своих размышлениях ушли от мифологичности. Они пытались объ¬яснить мир, исходя из него самого, искали естественные причины сущего. Этот самый первый этап развития естествознания называется натурфилософия. Большое развитие натурфилософия получила в Древней Греции.
2. Многовековые исследования и попытки решения этих вопро¬сов породили разные концепции возникновения жизни:
• креационизм - сотворение жизни Богом;
• концепция самопроизвольного зарождения из неживого вещества;
• концепция стационарного со¬стояния, в соответствии с которой жизнь существо-вала всегда;
• концепция внеземного происхождения жизни в соответствии с которой жизнь зане-сена из Космоса.
3. Все живое состоит из клеток. Поэтому, чтобы ответить на кардинальный вопрос: «Что та-кое жизнь?», надо понять, в том числе, как работает живая клетка, из чего она состоит и как уст-роены отдельные ее элементы. Конечно, в нашем курсе это будет беглое знакомство в рамках представлений концепции современного естествознания.

Содержание

Вопрос 1. История естествознания: наука эллинского мира 3
Вопрос 15. Возникновение жизни на Земле 7
Вопрос 21. Организация и упорядоченность процессов в клетке. Биологические мембраны как важнейшие структурные элементы. Жидкостно-мозаичная модель строения мембраны, функции мембран. 12
Вопрос 38. Экспериментальный анализ – основа современной науки 21
Вопрос 46. Атмосфера, вода, почва, пища 29
Список литературы 33

Прикрепленные файлы: 1 файл

КСЕ 2.doc

— 1.11 Мб (Скачать документ)

Тем не менее пока и эта гипотеза полного  научного обоснования не получила. Хотя спектр возможных условий для существования живых организмов достаточно широк, все же считается, что они должны погибнуть в космосе под действием ультрафиолетовых и космических лучей. К тому же эта гипотеза не решает проблемы происхождения жизни, а лишь выносит ее за пределы земли - если жизнь была занесена на землю из космоса, то где и как она возникла? Есть вариант этой гипотезы, утверждающий вечность жизни во вселенной. Считается, что после большого взрыва, в результате которого образовалась наша вселенная, в процессе появления вещества на самых ранних этапах эволюции вселенной произошло разделение этого вещества на живое и неживое, и жизнь существует столько же времени, сколько и весь космос.

Наряду с гипотезой панспермии в современной научной литературе сохраняется также гипотеза о случайном характере возникновения на Земле первичной живой молекулы, которая появилась лишь раз за все время существования нашей планеты. В силу этого обстоятельства экспериментальную проверку данной гипотезы произвести невозможно. Эта гипотеза получила широкое распространение среди генетиков в связи с открытием роли ДНК в явлениях наследственности. Г. Меллер в 1929 г. развивал мысль, что чисто случайно на Земле возникла единичная «живая генная молекула», обладавшая внутримолекулярным жизнеопределяющим строением, которое она пронесла неизменным через все развитие земной жизни. Долгое время моделью такой «живой молекулы» считали частицу нуклеопротеида вируса табачной мозаики, но сейчас стало очевидным, что вирусы нельзя рассматривать как промежуточный этап на пути возникновения жизни: сперва должна была возникнуть жизнь, а затем вирус. Тем не менее, идея случайного возникновения ДНК до сих пор широко распространена в научной литературе, хотя вероятность такого события очень мала.

Таким образом, на протяжении веков  менялись взгляды на эту проблему, но наука все еще далека от ее решения. И сегодня продолжаются споры о сущности жизни: является ли она просто чрезвычайно упорядоченным состоянием обычных атомов и молекул, из которых состоит «живое вещество», или существуют пока не открытые элементарные «частицы жизни», переводящие обычные химические и физические вещества в живое состояние. Веских доказательств и аргументов в пользу справедливости той или иной точки зрения нет.

Очевидно, более целесообразно  рассматривать жизнь как особую форму движения материи, закономерно возникшую на определенном этане ее развития. Разумеется, возникновение жизни содержало элемент случайности, но оно было не абсолютно случайным, а в основе своей закономерным, необходимым. Видимо, появление жизни произошло, когда химическая эволюция после одной из точек бифуркации привела к появлению живого организма и началу биологической эволюции.

Поэтому сегодня наиболее перспективным  направлением для естествознания является исследование возникновения жизни на нашей планете из неживой материи в ходе процессов самоорганизации.

Гипотеза происхождения  жизни А. И. Опарина (1924 г.) явилась первой научной концепцией, доказавшей на основе экспериментов возможность естественного возникновения простейших организмов из неорганических веществ. Ученый выступил с утверждением, что монополия биотического синтеза органических веществ характерна лишь для современного периода существования нашей планеты.

В начале своего существования, когда  Земля была безжизненной, на ней  осуществлялись абиотические синтезы углеродных соединений и их последующая предбиологическая эволюция. Затем шло постепенное усложнение этих соединений, формирование из них индивидуальных обособленных систем, превращение их в протобионты, а затем в первичные живые вещества.

А. И. Опарин стал рассматривать появление жизни как естественный процесс, который состоял из первоначальной химической эволюции, протекавшей на ранних этапах развития планеты и перешедший постепенно на качественно новый уровень - биохимическую эволюцию.

Этот процесс с самого начала был неразрывно связан с геологической эволюцией Земли. Опарин предположил и экспериментально доказал, что под действием электрических разрядов, тепловой энергии, ультрафиолетового излучения в газовых смесях, содержащих пары воды, аммиака, цианистого водорода, метана и др., появляются аминокислоты, нуклеотиды, полипептиды, другие вещества, свойственные живым организмам.

Согласно гипотезе Опарина, возникновение  и развитие химической эволюции произошло в ходе образования и накопления в первичных водоемах исходных органических молекул, которые скапливались в сравнительно неглубоких местах, прогреваемых солнцем, богатым ультрафиолетовым излучением при отсутствии озонового слоя атмосферы.

Ультрафиолетовые лучи обеспечивали энергией протекание химических реакции между органическими соединениями. Таким образом, в некоторых зонах первичных водоемов протекали случайные химические реакции. Большая их часть быстро завершилась из-за недостатка исходного сырья. Но в хаосе химических реакций произвольно возникали и закреплялись реакции циклических типов, обладавшие способностью к самоподдержанию. Результатом этих реакций и стали коацерваты - пространственно обособившиеся целостные системы. Существенной их особенностью была способность поглощать из внешней среды различные органические вещества, что обеспечивало возможность первичного обмена веществ со средой. Естественный отбор способствовал сохранению наиболее устойчивых коацерватных систем. Система, описанная Опариным, представляла собой открытую химическую микроструктуру и уже была наделена способностью к обмену веществ, хотя еще не имела системы для передачи генетической информации на основе функционирования нуклеиновых кислот.

В ходе естественного отбора возникли важнейшие свойства жизни, отличающие ее от предыдущего этапа развития. Возникшие целостные многомолекулярные системы, обособленные от окружающей среды определенной границей раздела, сохраняли с ней взаимодействие по типу открытых систем. Только такие системы, черпающие из внешней среды вещества и энергию, могли противостоять нарастанию энтропии и даже способствовать ее уменьшению в процессе своею роста и развития, что является характерным признаком всех живых существ.

Естественный отбор сохранял те целостные системы, в которых более совершенной была функция обмена веществ, способствовавшая быстрому росту системы и ее динамической устойчивости в данных условиях существования.

Выживающие в ходе естественного  отбора системы имели специфическое строение белков и нуклеотидов, которые и обусловили появление наследственности. В органической химии известны примеры реакций такого типа. Их отбор и выживание следует рассматривать как возможный качественный скачок, создавший предпосылки для перехода от химической эволюции к биологической. Вместе с отбором и совершенствованием циклических комплексов происходил отбор и совершенствование участвующих в этих реакциях органических молекул.

Популярность концепции Опарина  в научном мире очень велика. Его  ученики и последователи и сегодня продолжают исследования в этом направлении. Но у этой концепции есть как сильные, так и слабые стороны. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вопрос 21. Организация  и упорядоченность процессов  в клетке. Биологические мембраны как важнейшие структурные элементы. Жидкостно-мозаичная модель строения мембраны, функции мембран.

Все живое состоит из клеток. Поэтому, чтобы ответить на кардинальный вопрос: «Что такое жизнь?», надо понять, в том числе, как работает живая клетка, из чего она состоит и как устроены отдельные ее элементы. Конечно, в нашем курсе это будет беглое знакомство в рамках представлений концепции современного естествознания.

Надежно установлено, что все живое  состоит из клеток как дискретных единиц, подобно тому как неживое  вещество — из дискретных атомов и  молекул и развивается из клеток, которые можно считать мельчайшими единицами живой природы. Правда, жизнь может существовать и во внеклеточной форме — в виде вирусов. Вирусы — это совокупность макромолекул размером 20—300 нм, они состоят из нуклеиновой кислоты и белковой оболочки, называемой капсидом. Вирусы видеоспецифичны, размножаются только в живых клетках-«хозяевах», значительно меньше самых мелких клеток и не способны к самовоспроизведению. Поэтому именно клетка является структурной и функциональной единицей любого живого организма. Каждая клетка является микроносителем жизни, поскольку в ней заключена такая генетическая информация, которая достаточна для воспроизведения всего организма, причем этот носитель жизни «подчинил свою собственную свободу деятельности организма в целом». Элементарные явления на этом уровне организации биологических структур обусловлены процессами обмена веществ. Благодаря деятельности клеток поступающие из окружающей среды вещества превращаются в субстраты, энергию и информацию, которые усваиваются в процессе биосинтеза белков в соответствии с генной программой ДНК.

На клеточном уровне сочетаются процессы передачи и переработки  информации и превращения веществ и энергии, поэтому элементарные явления на клеточном уровне создают энергетическую и вещественную основу жизни на других уровнях. Целевой функцией клетки является сохранение ее под воздействием внешней среды, ее устойчивость как «единицы жизни», стремление поддержать стабильность протекающих в ней процессов. В настоящее время на Земле насчитывается свыше четырех миллионов видов клеточных организмов. Средний размер животной соматической клетки 10—20 мкм в диаметре, растительной — 30—50 мкм, масса клетки около — 10-8—10-9 г. Количество клеток у примитивных беспозвоночных достигает 102—104, у высокоорганизованных животных — до 1015—1017.

На протяжении всей жизни идет непрерывная  замена старых клеточных структур на вновь образующиеся. Минимальный  срок жизнедеятельности клеток человека — один-два дня. Ежедневно погибает до 70 млрд клеток кишечного эпителия и 2 млрд эритроцитов. Клетки крови полностью заменяются через четыре месяца. Мы знаем почти поговорку: «Берегите нервы — нервные клетки (нейроны) не восстанавливаются». Да, они не размножаются, но на протяжении всей жизни непрерывно перестраиваются, И этот процесс можно сравнить на бытовом уровне с нашей жизнью в течение долгого времени в одном доме, но мы многократно изменяем в нем обстановку.

Клетке присущи все признаки живого: обмен веществ и энергии, реагирование на внешнюю среду (саморегуляция), рост, размножение путем деления (самовоспроизведение), передача наследственных признаков, способность двигаться и в целом самоорганизация. Клетка обладает как бы полнотой свойств жизни, что позволяет ей как самостоятельной единице живого существовать и отдельно: изолированные клетки многоклеточных организмов могут жить и размножаться в питательной среде. Могут быть простейшие одноклеточные организмы (бактерии, некоторые водоросли и грибы) и многоклеточные (большинство животных и растений). Клетки всех живых организмов имеют похожий химический состав и сходное строение. Известно, что нет никаких особых атомов, характерных для живого.

Многоклеточные организмы содержат до несколько тысяч клеток и являются организованными совокупностями клеток, различных по форме, структуре и функциям, т.е. дифференцированными и дискретными системами. Однако организация клеток в организме построена по единому структурному признаку.

Клетки животных и растений различаются, но для них можно выделить три главные общие части:

• цитоплазму,

• клеточную, или плазматическую, мембрану, отделяющую цитоплазму от окружающей среды,

• клеточное ядро (рис. 3).

Живое вещество клетки (протоплазма) представляет собой студнеобразную массу и содержит множество структурных элементов меньшего размера, чем сама клетка, которые называются органеллами. Наружная часть протоплазмы называется клеточной мембраной, а внутренняя часть — цитоплазмой, состоящей из воды (80%), белка и аминокислоты (10%), углеводов (5%).

Цитоплазму и протоплазму, как ее живую субстанцию, можно считать тем живительным микроокеаном, где процессы диссимиляции и ассимиляции обеспечивают переход от неживого к живому. В них и происходит обмен веществ. Задача протоплазмы состоит в обеспечении структурной основы обмена веществ, пространственного размещения молекулярных компонентов клетки, связанных с их движением и обеспечением процессов жизнедеятельности. По существу, протоплазма является совокупностью не только материальных компонентов, содержащихся в ней, но и процессов, обеспечивающих метаболизм. Поскольку протоплазма заполнена разными органеллами, внутриклеточными белковыми молекулами, составляющими цитоскелет, или клеточный матрикс, то можно ее считать упорядоченной структурой.

 

 

 

Рис. 3. Строение клетки

 

Органеллы — это рабочие субстанции клетки, выполняющие те или иные функции: производят энергию или приводят клетку в движение, служат для разделения клетки на области (или для выделения внутри нее областей) с разными условиями и содержат разные наборы молекул. К органеллам относятся ядра, эндоплазматический ретикулум, рибосомы, лизосомы, митохондрии, жгутики, комплексы Гольджи, хлоропласты.

Ядро содержит полимерные молекулы дезоксирибонуклеиновой кислоты (ДНК), в которой закодирована вся информация о данном виде, и является хранителем генетической информации. В ряде одноклеточных организмов, называемых прокариотическими, ядро может отсутствовать. Роль хранителя генетической информации в них играет нуклеотид, не имеющий оболочки и состоящий из одной ДНК размером 1—5 мкм. Клетки, имеющие четко выраженные ядра, отделенные мембраной от остальной цитоплазмы, называются эукариотическими, их размер — 10—50 мкм. Размеры органелл составляют от 20 нм до 5 мкм (рибосомы ~20 нм, ядра, митохондрии, хлоропласты ~ 1—5 мкм).

Образное сравнение размеров клетки и содержащихся в ней веществ  приводит английский ученый Дж. Кендрью1: «Представьте себе, что увеличили человека до размеров Великобритании, тогда клетка имеет размер фабричного здания. Внутри клетки находятся содержащие тысячи атомов большие молекулы, в том числе молекулы нуклеиновой кислоты. Так вот даже при таком громадном увеличении, которое мы себе вообразили, молекулы нуклеиновой кислоты будут меньше электрических проводов».

Информация о работе Контрольная работа по предмету "Концепции современного естествознания"