Artificial intelligence

Автор работы: Пользователь скрыл имя, 03 Октября 2013 в 17:43, реферат

Краткое описание

Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the bronze robot of Hephaestus, and Pygmalion's Galatea. Human likenesses believed to have intelligence were built in every major civilization: animated cult images were worshipped in Egypt and Greece and humanoid automatons were built by Yan Shi, Hero of Alexandria and Al-Jazari. It was also widely believed that artificial beings had been created by Jābir ibn Hayyān, Judah Loew and Paracelsus. By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's R.U.R. (Rossum's Universal Robots). Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial intelligence.

Прикрепленные файлы: 1 файл

ARTIFICIAL_INTELLIGENCE.doc

— 46.50 Кб (Скачать документ)

Artificial intelligence

 

History of artificial intelligence

Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the bronze robot of Hephaestus, and Pygmalion's Galatea. Human likenesses believed to have intelligence were built in every major civilization: animated cult images were worshipped in Egypt and Greece and humanoid automatons were built by Yan Shi, Hero of Alexandria and Al-Jazari. It was also widely believed that artificial beings had been created by Jābir ibn Hayyān, Judah Loew and Paracelsus. By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's R.U.R. (Rossum's Universal Robots). Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial intelligence.

Mechanical or "formal" reasoning has been developed by philosophers and mathematicians since antiquity. The study of logic led directly to the invention of the programmable digital electronic computer, based on the work of mathematician Alan Turing and others. Turing's theory of computation suggested that a machine, by shuffling symbols as simple as "0" and "1", could simulate any conceivable act of mathematical deduction. This, along with concurrent discoveries in neurology, information theory and cybernetics, inspired a small group of researchers to begin to seriously consider the possibility of building an electronic brain.

The field of AI research was founded at a conference on the campus of Dartmouth College in the summer of 1956. The attendees, including John McCarthy, Marvin Minsky, Allen Newell and Herbert Simon, became the leaders of AI research for many decades. They and their students wrote programs that were, to most people, simply astonishing: Computers were solving word problems in algebra, proving logical theorems and speaking English.[ By the middle of the 1960s, research in the U.S. was heavily funded by the Department of Defense and laboratories had been established around the world. AI's founders were profoundly optimistic about the future of the new field: Herbert Simon predicted that "machines will be capable, within twenty years, of doing any work a man can do" and Marvin Minsky agreed, writing that "within a generation ... the problem of creating 'artificial intelligence' will substantially be solved".

They had failed to recognize the difficulty of some of the problems they faced. In 1974, in response to the criticism of Sir James Lighthill and ongoing pressure from the US Congress to fund more productive projects, both the U.S. and British governments cut off all undirected exploratory research in AI. The next few years, when funding for projects was hard to find, would later be called the "AI winter".

In the early 1980s, AI research was revived by the commercial success of expert systems, a form of AI program that simulated the knowledge and analytical skills of one or more human experts. By 1985 the market for AI had reached over a billion dollars. At the same time, Japan's fifth generation computer project inspired the U.S and British governments to restore funding for academic research in the field. However, beginning with the collapse of the Lisp Machine market in 1987, AI once again fell into disrepute, and a second, longer lasting AI winter began.

In the 1990s and early 21st century, AI achieved its greatest successes, albeit somewhat behind the scenes. Artificial intelligence is used for logistics, data mining, medical diagnosis and many other areas throughout the technology industry. The success was due to several factors: the increasing computational power of computers, a greater emphasis on solving specific subproblems, the creation of new ties between AI and other fields working on similar problems, and a new commitment by researchers to solid mathematical methods and rigorous scientific standards.

On 11 May 1997, Deep Blue became the first computer chess-playing system to beat a reigning world chess champion, Garry Kasparov. In 2005, a Stanford robot won the DARPA Grand Challenge by driving autonomously for 131 miles along an unrehearsed desert trail. Two years later, a team from CMU won the DARPA Urban Challenge by autonomously navigating 55 miles in an Urban environment while adhering to traffic hazards and all traffic laws. In February 2011, in a Jeopardy! quiz show exhibition match, IBM's question answering system, Watson, defeated the two greatest Jeopardy! champions, Brad Rutter and Ken Jennings, by a significant margin.

The leading-edge definition of artificial intelligence research is changing over time. One pragmatic definition is: "AI research is that which computing scientists do not know how to do cost-effectively today." For example, in 1956 optical character recognition (OCR) was considered AI, but today, sophisticated OCR software with a context-sensitive spell checker and grammar checker software comes for free with most image scanners. No one would any longer consider already-solved computing science problems like OCR "artificial intelligence" today.

Low-cost entertaining chess-playing software is commonly available for tablet computers. DARPA no longer provides significant funding for chess-playing computing system development. The Kinect which provides a 3D body–motion interface for the Xbox 360 uses algorithms that emerged from lengthy AI research, but few consumers realize the technology source.

AI applications are no longer the exclusive domain of Department of defense R&D, but are now common place consumer items and inexpensive intelligent toys.

In common usage, the term "AI" no longer seems to apply to off-the-shelf solved computing-science problems, which may have originally emerged out of years of AI research.


Информация о работе Artificial intelligence