Беспроводные технологии

Автор работы: Пользователь скрыл имя, 31 Октября 2014 в 09:19, курсовая работа

Краткое описание

Цель выполнения работы является рассмотрение перспектив развития беспроводных технологий.
Объектом исследования являются беспроводные технологии.
Предметом исследования является анализ развития беспроводных технологий.
Для достижения цели были поставлены задачи:
1. Проанализировать виды беспроводной связи;
2. Исследовать технологию сетей стандарта 3G.

Прикрепленные файлы: 1 файл

беспроводные технологии.doc

— 492.00 Кб (Скачать документ)

Для инфракрасного канала (Infrared PHY) стандарт предусматривает скорость 1 Мбит/с (факультативно 2 Мбит/с) с импульсно-позиционной модуляцией. Большого интереса этот тип канала не представляет, поскольку дальность передачи, предусмотренная стандартом, не превышает 20 м.

Метод частотных скачков, так же как и описанный выше метод прямой последовательности, обеспечивает конфиденциальность и некоторую помехозащищенность передач. Помехозащищенность обеспечивается тем, что если на каком-нибудь из 79 подканалов передаваемый пакет не смог быть принят, то приемник сообщает об этом, и передача этого пакета повторяется на одном из следующих (в последовательности скачков) подканалов.

Таблица 1.2.1.

Сравнительная характеристика стандартов связи DSSS и FHSS

DSSS

FHSS

Выше скорость (на одну точку доступа)

Выше суммарная скорость передач в одной соте

Больше устойчивость к помехам

Устройства дешевле и проще в установке

Меньше мощность, меньше помех другим устройствам

Хорошо соответствует схеме с большим количеством независимых передач точка-точка

Лучше обеспечивает схему точка  -много точек

Меньше дальность

Хорошо подходит для построения корпоративных и коммерческих сетей

Больше шумит, менее помехоустойчив

 

Лучше подходит к работе внутри помещений


 

Суммируя, мы можем выделить следующие свойства Spread Spectrum технологии:

  • Помехозащищенность. (Избыточность кодирования помехоустойчивость)
  • Не создаются помехи другим устройствам. (Низкая мощность сигнала - низкий уровень помех)
  • Конфиденциальность передач.
  • Экономичность при массовом производстве. (Низкая мощность сигнала - дешевые высокочастотные компоненты оборудования)
  • Шумоподобный сигнал - компактные антенны
  • Шумоподобный сигнал - возможность работы в диапазоне, уже занятом «классическими» системами радиопередач без взаимных помех
  • Высокая скорость передач в канале - возможность экономного его использования по принципу локальной сети.

Стандарт 802.11 определяет скорость 1 Мбит/с для метода скачущей частоты и 2 Мбит/с в качестве опции. Некоторые компании заявляют, что они имеют продукты со скоростью передачи данных 3 Мбит/с и более в диапазоне 2,4 ГГц. Однако для того, чтобы эти высокоскоростные продукты соответствовали спецификации и работали с продуктами других производителей, они должны передавать данные со стандартными скоростями.

Поддерживаемые в настоящее время скорости просто черепашьи по сравнению с 10 Мбит/с для стандартного Ethernet и не идут ни в какое сравнение с высокоскоростными технологиями типа Fast Ethernet. Однако с появлением базового стандарта для беспроводных сетей производители могут принять его как исходную точку для разработки продуктов с поддержкой более высоких скоростей передачи данных, и определенные усилия в этом направлении уже предпринимаются.

По данным компании WLAN, два таких проекта уже запущены в рамках 802.11, но в обоих случаях стандартизации в ближайшее время ждать не приходится. Тем не менее отрасль уже предпринимает усилия по подготовке пути перехода к более скоростным системам для тех заказчиков, кто в них нуждается9.

Как надеются многие, высокие скорости мало что изменят в уровне MAC. А это значительно облегчает разработку и миграцию. Вообще говоря, усилия комитета 802.11 и производителей в области высокоскоростных беспроводных технологий не должны слишком уклоняться от стандарта 802.11. В противном случае высокоскоростные продукты не будут взаимодействовать с другими.

Что касается метода скачущей частоты, то несколько компаний заявили о своих намерениях обеспечить более быструю передачу данных в диапазоне 2,4 ГГц (хотя, каким образом это будет делаться, пока никто не сообщал).

В отношении метода прямой последовательности Bell Labs объявила в апреле этого года, что она запатентовала технологию, с помощью которой беспроводные локальные сети могут передавать информацию со скоростью 10 Мбит/с в диапазоне 2,4 ГГц. Метод прямой последовательности с модуляцией положения импульсов (Direct Sequence/Pulse Position Modulation, DS/PPM) опирается на DSSS, и, по утверждению Bell Labs, данная технология хорошо устойчива к шумам и помехам; при этом она надежна и эффективна.

«В настоящее время пропускная способность метода прямой последовательности превосходит аналогичный показатель для метода скачущей частоты из-за свойственных последнему накладных расходов, - говорит Шампнес из Lucent. - Кроме того, метод прямой последовательности позволяет перейти к более высоким скоростям с помощью DS/PPM; по сути все предложения, представленные IEEE 802.11 по высокоскоростным беспроводным сетям на 10 Мбит/с, опираются на метод прямой последовательности».

«Проблема с увеличением скорости в диапазоне 2,4 ГГц состоит в сокращении радиуса действия - критический вопрос, когда пользователи могут находиться в любом месте здания. Наша позиция заключается в том, что переход к более высоким скоростям в диапазоне 2,4 ГГц не имеет смысла, - говорит Баттон из Proxim. - Если увеличить мощность крошечного карманного устройства, то радиус действия можно получить тот же самый, что и в случае меньших скоростей передачи, но эта возросшая мощность потребует значительных затрат энергии». Ввиду того, что многие беспроводные клиенты работают от батарей, более высокий уровень потребления энергии приведет к сокращению срока работы устройства без подзарядки. Несмотря на эти трудности, другие компании, например Symbol, не собираются отказываться от разработки высокоскоростных продуктов в диапазоне 2,4 ГГц.

В январе этого года FCC предоставила полосу шириной в 300 МГц для беслицензионной национальной информационной инфраструктуры (Unlincensed National Information Infrastructure, U-NII) в диапазоне 5 ГГц. Порции диапазона включают интервалы от 5,15 до 5,25 ГГц, от 5,25 до 5,35 ГГц и от 5,75 до 5,85 ГГц. Доступные в этом диапазоне интервалы частот делают высокоскоростную беспроводную связь гораздо более реалистичной затеей.

Единственной пока компанией, выпускающей продукты, работающие в этом диапазоне частот, является RadioLAN. Продукты RadioLAN/10 работают со стандартной скоростью Ethernet в 10 Мбит/с. Они передают во всех трех новых диапазонах и сертифицированы на соответствие U-NII при 5,8 ГГц.

Марк Босс, вице-президент по маркетингу RadioLAN, полагает, что скорости 10 Мбит/с можно добиться и при сигнале с частотой 2,4 ГГц, но он сомневается, что такое решение надежно. «Настоящая проблема [повышения скоростей продуктов в диапазоне 2,4 ГГц] - это цена, - говорит он. - Беспроводное решение не может стоить в два раза дороже проводного и оставаться в то же время привлекательным для заказчика. Но для достижения более высокой пропускной способности данных в диапазоне 2,4 ГГц производителям придется использовать более дорогие комплектующие. По этой же причине Gigabit Ethernet дороже 10BaseT». С другой стороны, в силу своей природы диапазон 5 ГГц позволяет передавать данные со скоростью 10 Мбит/с, так как его частота выше.

1.3. Сети сотовой связи

Стандарту GSM отведена одна из главных ролей в процессе эволюции систем связи. Он тесно связан со всеми современными стандартами цифровых сетей, в первую очередь с ISDN (Integrated Services Digital Network) и IN (Intelligent Network). Основные функциональные элементы GSM входят в разрабатываемый сейчас международный стандарт глобальной системы подвижной связи UMTS (Universal Mobile Telecommunications System) 10.

В начале 1980-х годов началось быстрое развитие аналоговых систем сотовой подвижной связи Европы, особенно в странах Скандинавии, Великобритании, Франции и Германии. Каждая страна разрабатывала свою собственную систему, несовместимую с другими как в оборудовании, так и в предоставляемых услугах. Вследствие этого мобильное оборудование каждого государства использовалось лишь внутри его национальных границ и имело весьма ограниченный рынок сбыта. Таким образом возникла необходимость в создании единого общеевропейского стандарта.

В 1982 году CEPT (Conference of European Posts and Telegraphs) в целях изучения и разработки общеевропейской системы сотовой подвижной связи общего пользования создала рабочую группу, получившую название GSM (Groupe Special Mobile). Разрабатываемая система должна была удовлетворять следующим критериям:

–  высокое качество передачи речевой информации;

–  низкая стоимость оборудования и предоставляемых услуг;

–  возможность поддержки портативного оборудования пользователя;

–  поддержка ряда новых услуг и оборудования;

–  спектральная эффективность;

–  совместимость с ISDN;

– поддержка международного роуминга, т.е. возможности использования абонентом своего мобильного телефона при перемещении в другую сеть GSM.

В 1989 году дело создания GSM перешло к ETSI (European Telecommunication Standards Institute), а в 1990 году были опубликованы спецификации первой фазы GSM. К середине 1991 года стали поддерживаться коммерческие услуги GSM, а к 1993 году функционировало уже 36 сетей GSM в 22 странах, и еще 25 стран выбрали направление GSM или поставили вопрос о его принятии. Несмотря на то, что система GSM была стандартизована в Европе, на самом деле она не является исключительно европейским стандартом. Сети GSM внедрены, либо планируются к внедрению почти в 60 странах Европы, Ближнего и Дальнего Востока, Африки, Южной Америки и в Австралии. В начале 1994 года число абонентов GSM во всем мире достигло 1,3 миллиона человек. К началу 1995 года их насчитывалось уже более 5 миллионов. Акроним GSM приобрел новое значение - Global System for Mobile communications.

Разработчики GSM выбрали неопробованную в то время цифровую систему, противопоставив ее стандартизованным аналоговым системам сотовой подвижной связи, таким как AMPS (Advanced Mobile Phone Service) в США и TACS (Total Access Communications System) в Великобритании. Они верили в то, что усовершенствование алгоритмов компрессии и цифровых процессоров позволит удовлетворить первоначальные требования к системе, и она будет развиваться по пути улучшения соотношения качество/стоимость.

С самого начала разработчики GSM стремились обеспечить совместимость сетей GSM и ISDN по набору предлагаемых услуг. В соответствии с определениями ITU-T (International Telecommunication Union - Telecommunications Standardization Sector), сеть GSM может предоставлять следующие типы услуг:

–  услуги по переносу информации (bearer services);

–  услуги предоставления связи (teleservices);

–  дополнительные услуги (supplementary services).

Самым известным направлением деятельности GSM является телефония. Так как GSM по существу является цифровой системой передачи данных, речь кодируется и передается в виде цифрового потока. Еще одним примером предоставляемого сервиса является оказание экстренной помощи, когда ближайший поставщик такого рода услуги уведомляется при помощи набора трех цифр (например, 911). Кроме того, предоставляются разнообразные услуги передачи данных. Абоненты GSM могут осуществлять обмен информацией с абонентами ISDN, обычных телефонных сетей, сетей с коммутацией пакетов, и сетей связи с коммутацией каналов, используя различные методы и протоколы доступа, например, X.25 или X.32. Возможна передача факсимильных сообщений, реализуемых при использовании соответствующего адаптера для факс-аппарата. Уникальной возможностью GSM, которой не было в старых аналоговых системах, является двунаправленная передача коротких сообщений SMS (Short Message Service), (до 160 байт), передаваемых в режиме с промежуточным хранением данных. Адресату, являющемуся абонентом SMS, может быть послано сообщение, после которого отправителю посылается подтверждение о получении. Короткие сообщения можно использовать в режиме широковещания, например, для того, чтобы извещать абонентов об изменении условий дорожного движения в регионе11.

Текущие спецификации в виде дополнительных возможностей описывают услуги по переносу информации и предоставлению связи (например, перенаправление вызова в случае недоступности подвижного абонента), В последствии ожидается появление новых возможностей, таких как идентификация вызова, постановка вызова в очередь, переговоры сразу нескольких абонентов и др.

Область, накрываемая сетью GSM, разбита на соты шестиугольной формы. Диаметр каждой шестиугольной ячейки может быть разным - от 400 м до 50 км. Функции и интерфейсы элементов сети GSM описаны в рекомендациях ETSI. Система состоит из трех составных частей.

Помимо терминала MS содержит пластиковую карточку, которую называют модулем идентификации абонента SIM (Subscriber Identity Module). При вставке SIM-карты в другой терминал GSM абонент продолжает получать полный комплекс услуг.

Каждый терминал имеет уникальный международный идентификатор мобильного оборудования, SIM-карта содержит международный идентификатор мобильного абонента, секретный ключ для аутентификации,и другую информацию. Эти идентификаторы не зависят друг от друга, а SIM-карта защищена от несанкционированного использования паролем либо персональным кодом.

BSS тоже складывается из двух  частей: из базовой приемопередающей  станции BTS (Base Transceiver Station) и контроллера  базовой станции BSC (Base Station Controller).Интерфейс Abis, связывающий эти части, позволяет  оперировать компонентами, созданными различными производителями. Радиопокрытие BSS делится на территории - их принято называть - «соты», каждая покрывается одной BTS.

BTS управляет  протоколами радиоканалов с MS. На  крупной густонаселенной территории  может располагаться много BTS, и поэтому к ним предъявляются очень строгие требования (четкость границ, надежность, переносимость и малая стоимость). BSC управляет радиоресурсами одного или нескольких BTS, контролирует предоставление радиоканала, регулировку частоты, управление перемещаемыми из ячейки в ячейку вызовами (хендоверами) и является связующим звеном между подвижной станцией и MSC.

Как уже было отмечено, основной компонент сетевой подсистемы - центр MSC. Он управляет подвижным абонентом: регистрирует, идентифицирует, обновляет информацию о местонахождении, осуществляет хендоверы, маршрутизирует вызовы при роуминге абонентов, а также обеспечивает соединение с фиксированными сетями. Перечисленные услуги обеспечиваются различными функциональными элементами HLR, VLR и др. (см. рис.1), доступ к которым возможен через сеть системы общеканальной сигнализации SS7 (Signalling System No. 7).

Рисунок 1.3.1 – Архитектура сети GSM.

 

Подвижная станция MS (Mobile Station) - портативный (карманный) аппарат, либо автомобильный телефон.

Информация о работе Беспроводные технологии