Характеристика кристаллических решеток

Автор работы: Пользователь скрыл имя, 23 Июля 2013 в 21:16, реферат

Краткое описание

Материаловедение - прикладная наука о связи состава, строения и свойств материалов. Теоретической основой материаловедения являются соответствующие разделы физики и химии. Для конструкционных материалов основными свойствами являются:
- физические: плотность, теплопроводность, теплоемкость, электропроводность, магнитные свойства;
- химические: способность вступать в химические соединения, жаростойкость;
- механические: прочность, пластичность, твердость, упругость и вязкость.;
- технологические: жидкотекучесть, ковкость, обрабатываемость резанием;
- эксплуатационные: сопротивление коррозии, изнашиванию и усталости, жаропрочность, хладостойкость и др.

Прикрепленные файлы: 1 файл

1 Характеристика кристаллических решеток.doc

— 1.17 Мб (Скачать документ)

При неравновесной кристаллизации этого же сплава при температуре  t1 будут выделяться первые кристаллы α-твердого раствора, концентрация которых также будет соответствовать точке k1. Однако при температуре t2 концентрация новых кристаллов и концентрация ранее выделившихся при температуре t1 кристаллов будут различаться. Это обусловлено тем, что при большой скорости охлаждения невозможно путем диффузии выровнять химический состав кристаллов . Усредненная концентрация будет превышать равновесную концентрацию при заданной температуре и располагается справа от линии  солидус. При неравновесной кристаллизации при температуре t4 не происходит полной кристаллизации, сохраняется жидкая фаза. Таким образом, в условиях неравновесной кристаллизации сплавы затвердевают при более низких температурах (линия неравновесного солидуса, зависит от температуры).

Так как при кристаллизации твердых  растворов образуются кристаллы  дендритного типа, то периферийные слои кристаллов и межосные пространства, кристаллизующиеся в последнюю очередь, будут заметно различаться по составу, наблюдаются дендритные ликвации. Дендритные ликвации могут быть уменьшены при нагреве сплава до температур, обеспечивающих интенсивную диффузию компонентов сплава.

При неравновесной кристаллизации сплавов с ограниченной растворимостью компонентов и эвтектическим  превращением (рис.15,б) в области  образования твердых растворов  также наблюдается появление  неравновесного солидуса и развивается  дендритная ликвация. Происходит смещение эвтектики, образуется квазиэвтектика.

В отличие от неравновесной кристаллизации для неравновесной перекристаллизации  требуется значительно большее переохлаждение. Рссмотрим процесс неравновесной перекристаллизации на примере распада твердого раствора при изменении его предельной растворимости с изменением температуры (рис.16).

                          рис.16

В условиях ускоренного охлаждения сплава с пересыщенным твердым раствором (например сплава 1) выделение избыточной фазы будет начинаться при температурах ниже температур, расположенных на равновесной линии предельной растворимости компонентов (линия DF). Чем больше скорость охлаждения, тем при более низких температурах будет проходить выделение избыточной фазы (точки 1/ или 1// вместо точки 1). Соответственно кристаллов избыточной фазы будет больше и они будут более мелкие. При очень большом переохлаждении выделения избыточной фазы может вообще не быть вообще (линии DF///, DF////), т.е. произойдет подавление распада твердого раствора.

3.4. Связь между свойствами  сплавов и типом диаграмм состояния

Между типом диаграмм состояния  и свойствами сплавов существует определенная взаимосвязь и впервые  эту связь установил Н.С. Курнаков. В схематичном виде она представлена на рис.17.

У сплавов, кристаллизующихся с образованием эвтектики во всем диапазоне концентраций, свойства изменяются по линейному закону в интервале между свойствами чистых компонентов (рис.17,а).

У сплавов, кристаллизующихся с  образованием непрерывных твердых  растворов, свойства изменяются по кривой с максимум свойств, значительно отличающихся от свойств компонентов (рис.17,б).

При образовании ограниченных твердых  растворов свойства сплавов в  области однофазных твердых растворов  изменяются по нелинейному закону, а в двухфазной области – по линейному (рис.17,в).

                                            Рис.17

Если при кристаллизации сплавов  образуется химическое соединение, то свойства сплавов при концентрации компонентов, соответствующей образованию  этого химического соединения, достигают максимума (или минимума) на кривой изменения свойств с соответствующим изломом кривой. Точка перелома называется сингулярной точкой (рис.17,г).

Эти закономерности указывают на то, что у твердых растворов такие  свойства, как твердость, удельное электрическое сопротивление, коэрцитивная сила и другие, всегда превосходят свойства исходных компонентов. Эти закономерности являются основой при разработке составов сплавов с заданными свойствами. Однако эти закономерности относятся к сплавам в равновесном состоянии, поэтому применение их ограничено.

Диаграммы состояния тройных сплавов представляют собой пространственные фигуры, основанием которых служит равносторонний треугольник, в вершинах расположены компоненты. Для упрощения изображения используют вертикальные (политермические) и горизонтальные (изотермические) сечения. Вертикальные сечения по своему виду похожи на двойные диаграммы, но в принципе они таковыми не являются и поэтому называются псевдобинарными диаграммами. Такие диаграммы вместе с изотермическими разрезами используются при изучении многокомпонентных (более четырех компонентов) систем.

 

  1. МАТЕРИАЛЫ С ОСОБЫМИ МАГНИТНЫМИ СВОЙСТВАМИ

4.1. Общие сведения  о магнитных свойствах материалов

Любое вещество, помещенное в магнитное поле, приобретает магнитный момент. Намагничивание вещества характеризуют: магнитная индукция В (Тл), напряженность магнитного поля Н (А/м), намагниченность J (А/м), магнитная восприимчивость km, магнитная проницаемость μ, магнитный поток Ф (Вб).

Намагниченность связана с напряженностью магнитного поля соотношением:

Магнитная индукция в  веществе определяется суммой индукции внешнего и собственного магнитных полей:

где μ0 = 4π·107 – магнитная постоянная, Гн/м.

Объединив выражения, получим:

где μr = 1 + km  или μr = В/(μ0Н) – относительная магнитная проницаемость.

В соответствии с магнитными свойствами все материалы делятся  на диамагнитные (диамагнетики), парамагнитные (парамагнетики), ферромагнитные (ферромагнетики), антиферромагнитные (антиферромагнетики), ферримагнитные (ферримагнетики).

Диамагнетики - вещества, которые намагничиваются противоположно приложенному полю и ослабляют его, т.е. имеют kм< 0 (от 10-4 до 10-7). Диамагнетизм присущ всем веществам, но выражен слабо, к диамагнетикам относятся все инертные газы, переходные металлы (бериллий, цинк, свинец, серебро), полупроводники (германий, кремний), диэлектрики (полимеры, стекла), сверхпроводники.

Парамагнетики - вещества, которые имеют kм> 0 (от 10-2 до 10-5) и слабо намагничиваются внешним магнитным полем. К парамагнетикам относятся металлы, атомы которых имеют нечетное число валентных электронов (калий, натрий, алюминий), переходные металлы (молибден, вольфрам, титан, платина) с недостроенными электронными оболочками атомов.

Ферромагнетики  - вещества между атомами которых возникает обменное взаимодействие. В результате такого взаимодействия энергетически выгодным в зависимости от расстояния становится параллельная ориентация магнитных моментов соседних атомов (ферромагнетизм) или антипараллельная (антиферромагнетизм). Пол действием обменных сил параллельная ориентация магнитных моментов атомов ферромагнитного вещества происходит в определенных областях, называемых доменами. В пределах домена материал в отсутствии внешнего поля намагничен до насыщения благодаря обменному взаимодействию отдельных атомов. Это взаимодействие длится только до определенной температуры, которая называется температурой точки Кюри. Выше этой температуры домены разрушаются, и ферромагнетик переходит в парамагнитное состояние. Ферромагнитные материалы легко намагничиваются в слабых магнитных полях, характеризуются большим значением магнитной восприимчивости (до 106), а также ее нелинейной зависимостью от напряженности поля и температуры. Железо, никель, кобальт и редкоземельный металл гадолиний относятся к ферромагнитным металлам.

Антиферромагнетиками называют  материалы, в которых во время обменного взаимодействия соседних атомов происходит антипараллельная ориентация их магнитных моментов. Так как магнитные моменты соседних атомов взаимно компенсируются, антиферромагнетики не обладают магнитным моментом, а характеризуются магнитной восприимчивостью, которая близка к восприимчивости парамагнетоков. При температуре выше некоторой критической, которая получила название температуры Нееля (аналогична температуре Кюри), магнитоупорядоченное состояние антиферромагнетика разрушается, и он переходит в парамагнитное состояние.

К ферримагнетикам относят вещества, в которых обменное взаимодействие осуществляется не непосредственно между магнитоактивными атомами, как в случае ферромагнетизма, а через немагнитный ион кислорода. Такое взаимодействие называют косвенным обменным или сверхобменным. Это взаимодействие в большинстве случаев приводит к антипараллельной ориентации магнитных моментов соседних ионов (т.е. к антиферромагнитному упорядочению). Однако магнитные моменты ионов не полностью компенсируются, и ферримагнитные вещества обладают магнитным моментом и имеют доменную структуру. Ферримагнетики наряду с ферромагнетиками относятся к сильномагнитным материалам.

4.2. Процессы технического  намагничивания и перемагничивания  ферромагнитных материалов

В ферромагнитных материалах реализуется такая доменная структура, для которой полная свободная энергия системы является минимальной. Полная свободная энергия состоит из следующих основных видов энергий: магнитостатической, магнитной анизотропии, магнитострикции, обменной. Минимум магнитостатической энергии, связанной с полями рассеивания или с возникновением полюсов на концах магнита, имеет место в том случае, когда магнитный поток замкнут внутри материала. Однодоменное состояние является невыгодным, так как приводит к возникновению магнитных полюсов, которые создают внешнее поле (поле рассеивания) Магнитостатическая энергия уменьшается, если тело состоит из нескольких доменов, и становится равной нулю при образовании замыкающих доменов (рис.18: 1 – замыкающие домены; 2 – основные домены), магнитный поток замкнут внутри тела, за его пределами магнитное поле равно нулю.

Рис.18

Деление образца на домены ограничивается энергией, затрачиваемой  на образование границ между доменами. Линейный размер доменов от 10-2 до 10-5 см. Толщина доменной границы составляет несколько сотен нанометров.

При действии внешнего магнитного поля происходит рост объема доменов, которые имеют направление намагниченности, совпадающее или близкое к направлению напряженности поля. Зависимость магнитной индукции ферромагнитного вещества от напряженности внешнего магнитного поля называют основной кривой намагничивания (рис.19).

                      Рис.19

Основную кривую намагничивания можно разделить на несколько  учатков, которые характеризуются определенными процессами намагничивания для ферромагнетиков. В области слабых полей (область I) магнитные восприимчивость и проницаемость не изменяются. Изменение магнитной индукции в этой области происходит в основном из-за обратимых процессов, которые обусловлены смещением границ доменов.

Кривая намагничивания в области II характеризуется тем, что происходит неупругое смещение границ доменов, т.е. процесс не является обратимым. В области приближения к насыщению (область III) изменение индукции объясняется в основном процессом вращения, когда направление вектора намагниченности самопроизвольных областей приближается к направлению внешнего поля. Полная ориентация намагниченности по полю соответствует техническому насыщению (конец области III). Последний участок кривой (областьIV) соответствует слабому росту индукции с увеличением напряженности поля. В этом случае увеличение индукции происходит благодаря росту намагниченности домена, т.е. ориентации спиновых моментов отдельных электронов, направление которых не совпадает с направлением внешнего поля вследствие дезориентирующего влияния теплового движения.

Используя основную кривую намагничивания можно определить различные  виды магнитной проницаемости (рис.20).

                      Рис.20

Различают абсолютную магнитную  проницаемость μа = В/Н, относительную

μ = В/μ0Н,  начальную μ, максимальную μmax  магнитную пронициемость. Начальная и максимальная магнитные проницаемости определяются как тангенсы угла наклона касательной к основной кривой намагничивания на участках I и III.

Зависимость магнитной  проницаемости от напряженности поля представлена на рис.21.

                     Рис.21

Начальная магнитная  проницаемость материала возрастает с увеличением температуры и  при температуре Кюри имеет максимум.

Магнитным гистерезисом называется явление отставания изменения магнитной индукции от напряженности магнитного поля (рис.22).

                  Рис.22

При уменьшении Н до нуля в образце  имеется остаточная индукция Br. Если направление поля изменить на противоположное и начать его увеличивать, то можно уменьшить индукцию до нуля. В этом случае Нс называется коэрцитивной (задерживающей) силой. По значению коэрцитивной силы материалы делятся на магнитомягкие (с малым значением коэрцитивной силы и большой магнитной проницаемостью) и магнитотвердые (с большой коэрцитивной силой и относительно небольшой магнитной проницаемостью). Значение индукции насыщения принято определять в поле Нs равным 5Нс. Кривая изменения индукции при изменении напряженности магнитного поля от +Нs до –Hs и обратно называется предельной петлей гистерезиса, по ней определяют коэрцитивную силу Нс, индукцию насыщения Вs, остаточную индукцию Br.

Намагниченность монокристалла ферромагнетика анизотропна. Кристалл железа в направлении (100) ребра куба намагничивается до насыщения при значительно меньшей напряженности магнитного поля по сравнению с направлением (111) диагонали куба. Удельная энергия, которую необходимо затратить на перемагничивание из направления легкого намагничивания в направление трудного намагничивания называется константой кристаллографической магнитной анизотропии - К.

В поликристаллических  материалах эффекты анизотропии  усредняются. Однако прокаткой можно создать кристаллографическую анизотропию, которая облегчит намагничивание.

Намагничивание в полях  напряженностью меньше НS называют техническим намагничиванием, а в полях с большей напряженностью - истинным намагничиванием, или парапроцессом.

На процесс намагничивания кроме  магнитной анизотропии существенно  влияют и магнитострикционные явления, которые могут как облегчать, так и тормозить намагничивание.

Информация о работе Характеристика кристаллических решеток