Вязкость жидкостей

Автор работы: Пользователь скрыл имя, 13 Октября 2013 в 14:41, реферат

Краткое описание

Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и, наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Прикрепленные файлы: 1 файл

Вязкость.doc

— 54.50 Кб (Скачать документ)

Вязкость (внутреннее трение) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:

Коэффициент пропорциональности, зависящий от сорта жидкости или  газа, называют коэффициентом динамической вязкости.

Качественно существенное отличие  сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и, наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вязкость жидкостей


Динамическая вязкость[

Внутреннее  трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Справедлив общий закон внутреннего трения — закон Ньютона:

Коэффициент вязкости   (коэффициент динамической вязкости, динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что   будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским. Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества  . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

где с и b — константы. Это эмпирическое соотношение называется формулой Бачинского.

Динамическая вязкость жидкостей  уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в  частности, при расчёте гидроприводов и в триботехнике, часто приходится иметь дело с величиной

и эта величина получила название кинематической вязкости. Здесь   — плотность жидкости;   — коэффициент динамической вязкости (см. выше).

Кинематическая  вязкость в старых источниках часто  указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1 мм2 1 c = 10−6 м2 c

Условная вязкость

Условная вязкость — величина, косвенно характеризующая гидравлическое сопротивление течению, измеряемая временем истечения заданного объёма раствора через вертикальную трубку (определённого диаметра). Измеряют в градусах Энглера (по имени немецкого химика К. О. Энглера), обозначают — °ВУ. Определяется отношением времени истечения 200 см3испытываемой жидкости при данной температуре из специального вискозиметра ко времени истечения 200 смдистиллированной воды из того же прибора при 20 °С. Условную вязкость до 16 °ВУ переводят в кинематическую (  м2/с) по таблице ГОСТ, а условную вязкость, превышающую 16 °ВУ, по формуле:

где   — кинематическая вязкость (в м2/с), а   — условная вязкость (в °ВУ) при температуре t.

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье — Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

где   — тензор вязких напряжений.

Среди неньютоновских жидкостей, по зависимости вязкости от скорости деформации различают псевдопластики и дилатантные жидкости. Моделью с ненулевым напряжением сдвига (действие вязкости подобно сухому трению) является модель Бингама. Если вязкость меняется с течением времени, жидкость называется тиксотропной. Для неньютоновских жидкостей методика измерения вязкости получает первостепенное значение.

С повышением температуры  вязкость многих жидкостей падает. Это объясняется тем, что кинетическая энергия каждой молекулы возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

 

Идеальная жидкость — в гидродинамике — воображаемая несжимаемая жидкость, в которой отсутствуют вязкость и теплопроводность. Так как в ней отсутствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.

Моделью идеальной жидкости пользуются при теоретическом рассмотрении задач, в которых вязкость не является определяющим фактором и ею можно  пренебречь. В частности, такая идеализация допустима во многих случаях течения, рассматриваемых гидроаэромеханикой, и даёт хорошее описание реальных течений жидкостей и газов на достаточном удалении от омываемых твёрдых поверхностей и поверхностей раздела с неподвижной средой. Математическое описание течений идеальных жидкостей позволяет найти теоретическое решение ряда задач о движении жидкостей и газов в каналах различной формы, при истечении струй и при обтекании тел.

 

Реальная жидкость не допускает наличия разрывов непрерывности ни внутри движущегося потока, ни на границах его с твердым телом. В действительности жидкость или газ не могут скользить вдоль поверхности твердого тела; скорости тех частиц, которые граничат с твердой стенкой, равны нулю, жидкость как бы прилипает к поверхности тела. Однако эта скорость резко возрастает при удалении от поверхности и на внешней границе весьма тонкого по сравнению с размерами тела пограничного слоя достигает значений, соответствующих схеме свободного скольжения идеальной жидкости. В случае плохо обтекаемого тела пограничный слой отрывается от поверхности тела и значительно искажает картину обтекания тела идеальной жидкостью.


Информация о работе Вязкость жидкостей