Энергетика будущего

Автор работы: Пользователь скрыл имя, 27 Мая 2014 в 11:18, реферат

Краткое описание

В данной работе мы попытаемся раскрыть виды альтернативной энергетики и попытаться обозначить перспективы развития энергетики будущего в России.

Прикрепленные файлы: 1 файл

РЕФЕРАТ Энергетика будущего.docx

— 50.57 Кб (Скачать документ)

Многие страны активно развивают ветроэнергетику. Например, Германия по выработке ветроэнергии в последние годы приблизилась к США, а по числу фирм, производящих ветроустановки догнала Данию. Немецкие ветроустановки наполняют рынок Бразилии, Мексики, Китая и других стран.

 

  1. Атомная энергетика

 

Сегодня примерно 17% мирового производства электроэнергии приходится на атомные электростанции (АЭС). В некоторых странах ее доля значительно больше. Например, в Швеции она составляет около половины всей электроэнергии, во Франции – около трех четвертей. Недавно согласно принятой в Китае программе вклад энергии атомных электростанций предусмотрено увеличить в пять – шесть раз. Заметную, хотя пока не определяющую, роль АЭС играют в США и России.

  Более сорока лет назад, когда дала ток первая атомная станция в мало кому известном в то время городке Обнинске, многим казалось, что атомная энергетика – вполне безопасная и экологически чистая. Авария на одной из американской АЭС, а затем катастрофа в Чернобыле показали, что на самом деле атомная энергетика сопряжена с большой опасностью. Люди напуганы. Общественное сопротивление сегодня таково, что строительство новых АЭС в большинстве стран практически остановлено. Исключение составляют лишь восточно-азиатские страны – Япония, Корея, Китай, где атомная энергетика продолжает развиваться.

Специалисты, хорошо знающие сильные и слабые стороны реакторов, смотрят на атомную опасность более спокойно. Накопленный опыт и новые технологии позволяют строить реакторы, вероятность выхода которых из-под контроля хотя и не равна нулю, но крайне мала. На современных атомных предприятиях обеспечен строжайший контроль радиации в помещениях и в каналах реакторов: сменные комбинезоны, специальная обувь, автоматические детекторы излучений, которые ни за что не откроют шлюзовые двери, если на вас есть хотя бы небольшие следы радиоактивной «грязи». Например, на атомной электростанции в Швеции, где чистейшие пластиковые полы и непрерывная очистка воздуха в просторных помещениях, казалось бы, исключают даже мысль о сколь-нибудь заметном радиоактивном заражении.       

Атомной энергетике предшествовали испытания ядерного оружия. На земле и в атмосфере проводились испытания ядерных и термоядерных бомб, взрывы которых ужасали мир. В то же время инженеры разрабатывали и ядерные реакторы, предназначенные для получения электрической энергии. Приоритет получили военное направление – производство реакторов для кораблей военно-морского флота. Военным ведомствам особенно перспективным представлялось использование реакторов на подводных лодках: такие суда имели бы практически неограниченный радиус действия и могли бы годами находиться под водой. Американцы сосредоточили свои усилия на создании корпусных водо-водяных реакторов, в которых замедлителем нейтронов, и теплоносителем служила обычная («легкая») вода и которые обладали большой мощностью на единицу массы энергетической установки. Были сооружены полномасштабные наземные прототипы транспортных реакторов, на которых проверялись все конструктивные решения и отрабатывались системы управления и безопасности. В середине 50-х годов XX в. первая подводная лодка с атомным двигателем «Наутилиус» прошла под льдами Ледовитого океана.

Аналогичные работы велись и в нашей стране, только наряду с водо-водяными реакторами разрабатывался канальный графитовый реактор (в нем теплоносителем тоже служила вода, а замедлителем – графит). Однако по сравнению с водо-водяным реактором у графитового мала удельная мощность. В то же время такой реактор обладал важным преимуществом – уже имелся значительный опыт сооружения и эксплуатации промышленных графитовых реакторов, отличающихся от транспортных установок главным образом давлением и температурой охлаждающей воды. А наличие опыта означало экономию времени и средств на опытно-конструкторские работы. При создании наземного прототипа графитового реактора для транспортных установок стала очевидной его бесперспективность. И тогда было решено использовать его для атомной энергетики. Реактор AM, а точнее, его турбогенератор мощностью 5000 кВт 27 июня 1954 г. подключили к электрической сети, и весь мир узнал, что в СССР пущена первая в мире АЭС – атомная электростанция.

Несмотря на внедрение новой системы регулирования, страшная угроза осталась. Для реактора РБМК характерны два крайних состояния: в одном из них каналы реактора заполнены кипящей водой, а в другом – паром. Коэффициент размножения нейтронов при заполнении кипящей водой больше, чем при заполнении паром. При таком условии возникает положительная обратная связь, при которой рост мощности вызывает появление дополнительного количества пара в каналах, что в свою очередь приводит к увеличению коэффициента размножения нейтронов, и следовательно, к дальнейшему росту мощности. Это известно давно, еще со времен проектирования РБМК. Однако только после Чернобыльской катастрофы в результате тщательного анализа выяснилось, что возможен разгон реактора на мгновенных нейтронах. В 1 час 23 мин 26 апреля 1986 г произошел взрыв реактора 4-го блока Чернобыльской АЭС. Ее последствия ужасны.

  Так нужно ли развивать атомную энергетику? Выработка энергии на АЭС и ACT (атомных станциях теплоснабжения) – это наиболее экологически чистый способ производства энергии. Энергия ветра, Солнца, подземного тепла и т.д. не может сразу и быстро заменить атомную энергию. Согласно прогнозу в США в начале XXI в. на все подобные способы производства энергии будет приходиться не более 10% вырабатываемой во всем мире энергии.

  Спасти нашу планету от загрязнения миллионами тонн углекислого газа, окиси азота и серы, которые постоянно выбрасываются ТЭЦ, работающими на угле, мазуте, перестать сжигать в огромных количествах кислород, можно лишь с помощью атомной энергетики. Но только при выполнении одного условия: «Чернобыль» не должен повториться. Для этого необходимо создать абсолютно надежный энергетический реактор. Но в природе не бывает ничего абсолютно надежного, все процессы, не противоречащие законам природы, происходят с большей или меньшей вероятностью. И противники атомной энергетики рассуждают примерно так: авария маловероятна, но нет никаких гарантий, что она не случится сегодня или завтра. Задумываясь над этим, нужно учесть следующее. Во-первых, взрыв реактора РБМК в том состоянии, в котором он эксплуатировался до аварии, отнюдь не маловероятное событие. Во-вторых, при таком подходе мы все должны жить в постоянном страхе, что Земля не сегодня - завтра столкнется с крупным астероидом – вероятность такого события ведь тоже не равна нулю. Думается, можно считать абсолютно безопасным реактор, для которого вероятность крупной аварии достаточно мала.

В СССР накоплен многолетний опыт сооружения и эксплуатации АЭС с реакторами ВВЭР (аналогичными американским PWR), на базе которых может быть в относительно короткие сроки создан в большей степени безопасный энергетический реактор. Такой, что в случае аварийной ситуации все радиоактивные осколки деления ядер урана должны остаться в пределах защитной оболочки.

Развитые страны с большой численностью населения в обозримом будущем не смогут из-за приближающейся экологической катастрофы обойтись без атомной энергетики даже при некоторых запасах обычных видов топлива. Режим экономии энергии может лишь на некоторое время отодвинуть проблему, но не решить ее. Кроме того, многие специалисты считают, что в наших условиях даже временного эффекта добиться не удастся: эффективность предприятий по энергоснабжению зависит от уровня развития экономики. Даже США потребовалось 20–25 лет со дня внедрения в промышленность энергоемких производств.

Вынужденная пауза, возникшая в развитии атомной энергетики, должна быть использована для разработки достаточно безопасного энергетического реактора на базе реактора ВВЭР, а также для разработки альтернативных энергетических реакторов, безопасность которых должна находиться на том же уровне, а экономическая эффективность значительно выше. Целесообразно построить демонстрационную АЭС с подземным размещением реактора ВВЭР в наиболее удобном месте, чтобы проверить ее экономическую эффективность и безопасность.

В последнее время предлагаются различные конструктивные решения атомных станций. В частности, компактную АЭС разработали специалисты Санкт-Петербургского морского бюро машиностроения «Малахит». Предлагаемая станция предназначается для Калининградской области, где проблема энергоресурсов стоит достаточно остро. Разработчики предусмотрели использование в АЭС жидкометаллического теплоносителя (сплава свинца с висмутом) и исключают возможность возникновения на ней радиационно-опасных аварий, в том числе при любых внешних воздействиях. Станция отличается экологической чистотой и экономической эффективностью. Все ее основное оборудование предполагается разместить глубоко под землей – в проложенном среди скальных пород туннеле диаметром в 20 м. Это дает возможность свести к минимуму число наземных сооружений и площадь отчуждаемых земель. Структура проектируемой АЭС – модульная, что тоже очень существенно. Проектная мощность Калининградской АЭС – 220 МВт, но может быть по мере необходимости уменьшена или увеличена в несколько раз при помощи изменения числа модулей.

 

  1. Ядерное топливо

 

Цепная реакция деления ядер сопровождается выделением огромного количества энергии. Так, при делении тяжелого ядра на два осколка освобождается энергия, равная примерно 1,1 МэВ на один нуклон. Расчеты показывают, что 1 кг урана выделяет в миллионы раз больше энергии, чем 1 кг каменного угля. Следовательно, ядерное топливо – чрезвычайно энергоемкий источник энергии. В то же время ядерный топливный цикл – сложнейший технологический процесс.

В отличие от утлеродосодержащих носителей энергии, применяемых и в то же время и как сырье для  химической промышленности, ядерное топливо представляет практический интерес преимущественно для производства электрической и тепловой энергии. Огромные возможности для развития атомной энергетики открываются с созданием реакторов-размножителей на быстрых нейтронах (бридеров), в которых выработка энергии сопровождается производством вторичного горючего – плутония, что позволит кардинально решить проблему обеспечения ядерным топливом. Как показывают оценки, 1 т гранита содержит примерно 3 г урана-238 и 12 г тория-232 (именно они используются в качестве сырья в бридерах). При потреблении энергии 5 . 108 МВт (на два порядка выше, чем сейчас) запаса урана и тория в граните хватит на 109 лет. Первый опытно-промышленный реактор на быстрых нейтронах мощностью до 350 МВт построен в г.Шевченко на берегу Каспийского моря. Он производит электроэнергию и опресняет морскую воду, обеспечивая пресной водой город и прилегающие район нефтедобычи с численностью населения около 150000 человек.

Колоссальной энергией обладает термоядерный синтез. При термоядерном синтезе выделяемая энергия на один нуклон значительно больше, чем в реакции деления тяжелых ядер. При делении ядра урана 238 высвобождается энергия около 0,84 МэВ на один нуклон, а при термоядерном синтезе дейтерия и трития – примерно 3,5 МэВ. Термоядерные реакции дают наибольший выход энергии на единицу массы «горючего», чем любые другие превращения. Например, по энергетической емкости количество дейтерия в стакане простой воды эквивалентно приблизительно 60 л бензина. В этой связи весьма заманчива перспектива осуществления управляемого термоядерного синтеза.

Трудность практической реализации управляемого термоядерного синтеза заключается в том, что он возможен только при очень высокой температуре – 107–108 К. При такой сверхвысокой температуре любое синтезируемое вещество находится в плазменном состоянии, и возникает техническая проблема удержания горячей плазмы в ограниченном объеме.

Над решением проблемы управляемого термоядерного синтеза усердно работают ученые многих стран в течение нескольких последних десятилетий. Один из путей решения данной проблемы – это удержание горячей плазмы в ограниченном объеме сильными магнитными полями. Для этого создаются сложнейшие в техническом исполнении термоядерные реакторы. Один из первых таких реакторов – Токамак-10– был собран в 1975г. в Институте атомной энергии им. И.В. Курчатова.

Управляемый термоядерный синтез открывает человечеству доступ к неисчерпаемой кладовой ядерной энергии, заключенной в легких элементах. Извлечение энергии возможно из дейтерия, содержащегося в обычной воде. Расчеты показывают, что количество дейтерия в Мировом океане составляет примерно 4·1013 т, что соответствует энергетическому запасу 1017 МВт·год, который можно считать практически неограниченным. Остается только надеяться, что проблема управляемого термоядерного синтеза в недалеком будущем будет успешно решена.

 

  1. Энергии Мирового океана

 

Известно, что запасы энергии в Мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20° С, равна примерно 10 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока используется лишь ничтожно малая доля этой энергии, да и то ценой больших и медленно окупающихся капиталовложений. Энергетика Мирового океана до сих пор кажется малоперспективной.

Происходит весьма быстрое истощение запасов ископаемого топлива (прежде всего нефти и газа), использование которою к тому же связано с существенным загрязнением окружающей среды (включая тепловое «загрязнение» и грозящее нежелательными климатическими последствиями повышение концентрации атмосферной углекислоты). Кроме того, ограниченность запасов урана (энергетическое использование которых к тому же порождает опасные радиоактивные отходы) и неопределенность как сроков, так и экологических последствий промышленного использования термоядерной энергии заставляют ученых и инженеров уделять все большее внимание поискам безвредных источников энергии не только перепадов уровня воды в реках, солнечного тепла, ветра, но и энергии Мирового океана.

Неожиданной возможностью энергетики Мирового океана оказалось выращивание с плотов в океане быстрорастущих гигантских водорослей, легко перерабатываемых в метан для энергетической замены природного газа. По имеющимся оценкам, для полного обеспечения энергией каждого человека-потребителя достаточно одного гектара плантаций таких водорослей. Большое внимание привлекает «океанотермическая энергоконверсия», т. е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например, при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей, как пропан, фреон или аммоний. В какой-то мере аналогичными, но пока, вероятно, более далекими представляются перспективы получения электроэнергии за счет различия между соленой и пресной водой, например морской и речной. Уже немало инженерного искусства вложено в макеты генераторов электроэнергии, работающих за счет морского волнения, причем обсуждаются перспективы электростанций с мощностями на многие тысячи киловатт. Еще больше сулят гигантские турбины на таких интенсивных и стабильных океанских течениях, как Гольфстрим.

Информация о работе Энергетика будущего