Электромагнитная природа света

Автор работы: Пользователь скрыл имя, 23 Сентября 2014 в 20:08, реферат

Краткое описание

Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра. Выделение этой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования. К оборудованию использующимся для изучения этой области спектра относятся различные линзы, зеркала, призмы, дифракционные решётки и пр.
Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины — с молекулярными размерами и межмолекулярными расстояниями.

Содержание

1.Введение
2. Электромагнитная природа света
3. Шкала электромагнитных волн
3.1 Низкочастотные волны
3.2 Радиоволны
3.3 Инфракрасное и световое излучения
3.4 Рентгеновское и гамма излучение
4. Способы исследования электромагнитных волн различной длины.
5. Световые явления

5.1 Мираж

5.2 Радуга

5.3 Гало

5.4 Паргелии

5.5 Полярное сияние

5.6 Давление света

6. Первые попытки определения скорости света

7. Определение скорости света Рёмером.

8. Определение скорости света по методу вращающегося зеркала.

9. Другие способы определения скорости света

10. Свет как форма материи

Прикрепленные файлы: 1 файл

Электромагнитная природа света.doc

— 292.00 Кб (Скачать документ)

                                                

 

  Содержание:

1.Введение

2. Электромагнитная  природа света

3. Шкала  электромагнитных волн

      3.1 Низкочастотные волны

      3.2 Радиоволны

      3.3 Инфракрасное и световое излучения

      3.4 Рентгеновское и гамма излучение

4. Способы исследования электромагнитных волн различной длины.

5. Световые явления

 

       5.1 Мираж

 

       5.2 Радуга

 

       5.3 Гало

 

       5.4 Паргелии

 

       5.5 Полярное сияние

 

       5.6 Давление света

 

6. Первые попытки определения скорости света

 

7. Определение скорости света Рёмером.

 

8. Определение скорости  света по методу вращающегося  зеркала.

 

9. Другие способы определения  скорости света

 

10. Свет как форма материи

 

 

 

 

 

Введение

Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра. Выделение этой области обусловлено не только близостью соответствующих участков спектра, но и сходством приборов, применяющихся для её исследования. К оборудованию использующимся для изучения этой области спектра относятся различные линзы, зеркала, призмы, дифракционные решётки и пр.

Частоты волн оптической области спектра уже сравнимы с собственными частотами атомов и молекул, а их длины — с молекулярными размерами и межмолекулярными расстояниями. Благодаря этому в этой области становятся существенными явления, обусловленные атомистическим строением вещества. По этой же причине, наряду с волновыми, проявляются и квантовые свойства света.

Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагретая до температуры 6000 градусов излучает электромагнитные волны в очень широком диапазоне длин волн.

Излучение оптического диапазона возникает при нагревании тел (инфракрасное излучение называют также тепловым) из-затеплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота его излучения. При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала тёмно красным, затем красным, жёлтым и далее ярким белым цветом. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие.

Кроме теплового излучения источником оптического излучения могут служить химические и биологические реакции.

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).

Открыто инфракрасное излучение было в 1800 г. английским учёным У. Гершелем.

Сейчас весь диапазон инфракрасного излучения подразделяют на три составляющих:

  • коротковолновая область: λ=0,74 - 2,5 мкм;
  • средневолновая область: λ=2,5 - 50 мкм;
  • длинноволновая область: λ=50 - 2000 мкм;

Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысячКельвинов) температурах лежит в основном именно в этом диапазоне.

Ультрафиоле́товое излуче́ние (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновскимизлучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и далёкий, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Электромагнитная природа света

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излученияопределяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

 

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

 

Естественный свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10-8сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер . По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.

 

Гармонические электромагнитные волны светового диапазона называются монохроматическими. Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны  представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:

 

,

(1.42)


 

где   - вектор Пойнтинга.

 

Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля   в однородной среде с диэлектрической   и магнитной  проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает :

 

,

(1.43)


 

где   - коэффициент преломления среды;   - волновое сопротивление эфира.

 

Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим. Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.

 

Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга   электромагнитной волны направлен по касательной к этой линии.

 

В однородных изотропных средах направление среднего вектора Пойнтинга   совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора  .

 

Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.

 

Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.

 

Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

 

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления  является функция координат точек среды. Если описать функцией   форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона - Якоби:

 

 

 

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.

В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений кажущегося дуализма света, приведшего, как известно, к формулировке логически противоречивых принципов квантовой механики.

На самом деле никакого дуализма в природе электромагнитных волн нет. Как показал Макс Планк в 1900 году в своей классической работе "О нормальном спектре излучения", электромагнитные волны представляют собой отдельные квантованные колебания частотой v и энергией E=hv, где h =const, в эфире. Последний есть сверхтекучая среда, имеющая стабильное свойство разрывности мерой h - постоянная Планка. При воздействии на эфир энергией, превышающей hv во время излучения происходит образование квантованного "вихря". Точно такое же явление наблюдается во всех сверхтекучих средах и образование в них фононов - квантов звукового излучения.

За "copy-and-paste" совмещение открытия Макса Планка 1900 года к открытому еще в 1887 году Генрихом Герцем фотоэффекта, в 1921 году Нобелевский комитет присудил премию Альберту Эйнштейну


1) Октавой по определению называется  диапазон частот между произвольной  частотой w и её второй гармоникой, равной 2w.

 

2) h=6.6310-34 Дж·сек - постоянная Планка.

 

 

 

 

 

 

 

 

 

 

 

 

 

Шкала электромагнитных волн

Электромагнитные волны классифицируются по длине волны   или связанной с ней частотой волны . Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

 

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

 

1) Низкочастотные волны;

 

2) Радиоволны;

 

3) Инфракрасное излучение;

 

4) Световое излучение;

 

5) Рентгеновское излучение;

 

6) Гамма излучение.

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

 

Рассмотрим спектр электромагнитных волн более подробно.

 

1. Низкочастотные  волны

Низкочастотные волны представляют собой электромагнитные волны, частота колебаний которых не превышает 100 КГц). Именно этот диапазон частот традиционно используется в электротехнике. В промышленной электроэнергетике используется частота 50 Гц, на которой осуществляется передача электрической энергии по линиям и преобразование напряжений трансформаторными устройствами. В авиации и наземном транспорте часто используется частота 400 Гц, которая дает преимущества по весу электрических машин и трансформаторов в 8 раз по сравнению с частотой 50 Гц. В импульсных источниках питания последних поколений используются частоты трансформирования переменного тока единицы и десятки кГц, что делает их компактными, энергонасышенными. 
Коренным отличием низкочастотного диапазона от более высоких частот является падение скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тыс. км/с при 100 кГц до примерно 7 тыс км/с при 50 Гц.

2.Радиоволны

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 1 мм (частота меньше 3 1011гц = 300 Ггц) и менее 3 км (выше 100 кГц).

 

Радиоволны делятся на:

 

1. Длинные волны в интервале  длин от 3 км до 300 м( частота в  диапазоне 105 гц -106гц= 1 МГц);

 

2. Средние волны в интервале  длин от 300 м до 100 м (частота в  диапазоне 106 гц -3*106гц=3мгц);

 

3. Короткие волны в интервале  длин волн от 100м до 10м (частота  в диапазоне 3106гц-3107гц=30мгц);

 

4. Ультракороткие волны с длиной волны меньше 10м(частота больше 3107гц=30Мгц).

 

Ультракороткие волны в свою очередь делятся на :

 

а) метровые волны;

 

б) сантиметровые волны;

 

в) миллиметровые волны;

 

Волны с длиной волны меньше, чем 1 м (частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).

 

Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла. Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10-12сек- 10-15сек, сравнимой со временем колебаний электронов внутри атомов и молекул. 
Коренным отличием радиоволн от более высоких частот является иное термодинамическое соотношение между длиной волны носителя волн (эфира), равной 1 мм (2,7К), и электромагнитной волны, распространяющейся в этой среде.

 

3. Инфракрасное  и световое излучения

Инфракрасное, световое, включая ультрафиолетовое, излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

 

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов.

 

Оптический спектр занимает диапазон длин электромагнитных волн в интервале от 210-6м= 2мкм до 10-8м=10нм (по частоте от1.51014гц до 31016гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Рис. 1.14. Шкала электромагнитных волн


Ширина оптического диапазона по частоте составляет примерно 18 октав, из которых на оптический диапазон приходится примерно одна октава( ); на ультрафиолет - 5 октав ( ), на инфракрасное излучение - 11 октав (

).

 

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

 

 

 

 

 

 

 

4. Рентгеновское  и гамма излучение

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.

 

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.

 

Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии  , соответствующего данной частоте   излучения.

 

Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10-3нм, что соответствует энергии квантов от 20эв до 1Мэв.

 

Гамма излучение составляют электромагнитные волны с длиной волны меньше 10-2нм, что соответствует энергии квантов больше 0.1Мэв.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    1. Способы исследования электромагнитных волн различной длины. Электромагнитные волны, применяемые в радиотехнике, имеют длину от нескольких километров до нескольких 

сантиметров. Электромагнитные же волны, представляющие собой свет, характеризуются длиной волны в несколько десятых микрометра. Это простое сопоставление показывает, что количественное различие в длине волны приводит к глубокому качественному различию во многих свойствах и особенностях электромагнитных волн. Возникает важная задача ближе ознакомиться со свойствами электромагнитных волн разной длины. Для разделения волн различной длины обычно применяют какой-либо способ разложения сложного излучения в спектр. В случае видимого света для этой цели можно воспользоваться дифракционной решеткой (см. § 136) или призмой (см. § 86). 
 
Рассматривая полученный на экране спектр, мы убеждаемся в возможности по цвету различать глазом волны различной длины. Однако, как уже неоднократно указывалось, глаз воспринимает только те электромагнитные волны, длина которых лежит в пределах (приблизительно) от 400 до 760 нм. Границы эти, конечно, довольно неопределенны, и отдельные наблюдатели способны «видеть» волны и несколько более короткие (примерно до 370 нм) и несколько более длинные (около 800 нм). Необходимо поэтому найти более общий способ обнаружения электромагнитных волн, чем наблюдение при помощи глаза. 
 
Так как распространяющаяся электромагнитная волна любой длины несет энергию, то таким более общим способом может явиться измерение энергии волны. Наиболее удобный для этой цели прием заключается в превращении электромагнитной энергии волны во внутреннюю энергию вещества, возрастание которой сопровождается нагреванием тела. Нагревание тел обнаруживается очень хорошо при помощи чувствительных термометров, например термоэлементов (см. т. II, § 83). Частичное превращение энергии электромагнитных волн во внутреннюю энергию происходит всякий раз, когда эти волны падают на какое-либо вещество и более или менее сильно поглощаются им. Опыт обнаружил, что некоторые черные вещества, например сажа, практически полностью поглощают энергию, приносимую световыми волнами различной длины. Именно поэтому они и представляются черными, т. е. не отражающими свет.

 

 
 
Покрыв налетом сажи чувствительную часть термоэлемента, можно, передвигая его по спектру, изучать электромагнитные волны в широком интервале длин волн. На рис. 297 изображено расположение элементов оптической 
 
Рис. 297. Схема опыта по исследованию распределения энергии в спектре: 1, 2, 3, 4 — части спектрального аппарата, дающего спектр источника в плоскости 5, 6—термоэлемент, могущий перемещаться вдоль спектра, 7 — гальванометр, Ф — фиолетовая граница спектра, Кр — красная граница спектра 
системы, пригодное для указанной цели. Измерив нагревание термоэлемента, можно вычислить энергию, приходящуюся на соответствующую область спектра, т. е. судить о распределении энергии по спектру. Такие энергетические измерения дают результаты, отличные от заключений, которые делает глаз. Действительно, человеку, воспринимающему свет глазом, желтая или зеленая часть спектра света дугового фонаря кажется гораздо ярче, чем красная, тогда как термоэлемент обнаруживает в красной части большее нагревание. Причина лежит в особенностях глаза, чувствительность которого к разным цветам различна (см. § 68) и который поэтому не дает правильных показаний относительно распределения энергии по спектру. Термоэлемент же — вполне «беспристрастный» прибор, ибо для всех длин волн он дает возможность судить о внутренней энергии, в которую переходит энергия света при поглощении.

Световые явления

Радуга; тень, отбрасываемая предметом; голубое небо; многоцветье окружающего нас мира — вот лишь несколько примеров световых явлений. Эти явления изучаются в разделе физики, который называется «оптика» (от греч. optike — наука о зрительных восприятиях) .  
 
Миражи. В неоднородной среде свет распространяется непрямолинейно. Если мы представим себе среду, в которой показатель преломления изменяется снизу вверх, и мысленно разобьем ее на тонкие горизонтальные слои, то, рассматривая условия преломления света при переходе от слоя к слою, заметим, что в такой среде луч света должен постепенно изменять свое направления.  
Такое искривление световой луч претерпевает в атмосфере, в которой по тем или иным причинам, главным образом благодаря неравномерному нагреванию ее, показатель преломления воздуха изменяется с высотой.  
Миражи делят на три класса.  
К 1 классу относят наиболее распространенные и простые по своему происхождению, так называемые озерные (или нижние) миражи, вызывающие столько надежд и разочарований у путников пустынь.  
Миражи 2 класса называют верхними или миражами дальнего видения. Они появляются в том случае, если верхние слои атмосферы окажутся по каким-либо причинам, например, при попадании туда нагретого воздуха, особенно разреженными. Тогда лучи, исходящие от земных предметов, искривляются сильнее и достигают земной поверхности, идя под большим углом к горизонту. Глаз же наблюдателя проецирует их в том направлении, по которому они входят в него. Миражи 3 класса – сверхдальнего видения – трудно объяснить. Однако, высказывались предположения об образовании в атмосфере гигантских воздушных линз, о создании вторичного миража, то есть миража от миража. Возможно, что здесь играет роль ионосфера, отражающая не только радиоволны, но и световые волны.  
 
Радуга – это красивое небесное явление – всегда привлекала внимание человека. В прежние времена, когда люди еще очень мало знали об окружающем их мире, радугу считали «небесным знамением» . Так, древние греки думали, сто радуга – это улыбка богини Ириды. У радуги различают 7 основных цветов, плавно переходящих один в другой. Вид дуги, яркость цветов, ширина полос зависят от размеров капелек воды и их количества. Большие капли создают радугу более узкую, с резко выделяющимися цветами, малые – дугу расплывчатую, блеклую и даже белую. Вот почему яркая узкая радуга видна летом после грозового дождя, во время которого падают крупные капли.  
Гало.  
Наиболее известным примером большого гало является знаменитое, часто повторяющееся «Брокенское видение» . Например, человек, стоящий на холме или горе, за спиной которого восходит или заходит солнце, обнаруживает, что его тень, упавшая на облака, становится неправдоподобно огромной. Это происходит из-за того, что мельчайшие капли тумана особым образом преломляют и отражают солнечный свет. Свое название явление получило по имени вершины Броккен в Германии, на которой, из-за частых туманов, можно регулярно наблюдать этот эффект.  
Паргелии. "Паргелий" в переводе с греческого – "ложное солнце". Это одна из форм гал: на небе наблюдается одно или несколько дополнительных изображений Солнца, расположенных на той же высоте над горизонтом, что и настоящее Солнце. Миллионы кристаллов льда с вертикальной поверхностью, отражающие Солнце, и образуют это красивейшее явление. Паргелии можно наблюдать в тихую погоду при низком положении Солнца, когда значительное количество призм располагается в воздухе так, что их главные оси вертикальны, и призмы медленно опускаются как маленькие парашютики. В этом случае наиболее яркий преломленный свет поступает в глаз под углом 220 с граней, расположенных вертикально, и создает вертикальные столбы по обе стороны от Солнца по горизонту. Эти столбы могут быть в некоторых местах особо яркими, создавая впечатление ложного Солнца.  
Полярные сияния.  
Одним из оптических явлений природы является полярное сияние. Оно имеет зеленый или сине-зеленый оттенок с редкими пятнами или каймой розового или красного цвета.Полярное сияние (северное сияние) — свечение (люминесценция) верхних слоёв атмосфер планет, обладающихмагнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра. В очень ограниченном участке верхней атмосферы сияния могут быть вызваны низкоэнергичными заряженными частицами солнечного ветра, попадающими в полярную ионосферу через северный и южный полярные каспы(полярный касп - область в околополуденной части магнитосферы, имеющая вид воронки, расширяющейся от Земли до магнитопаузы, и разделяющая силовые линии дневной магнитосферы и геомагнитного хвоста. ). В северном полушарии каспенные сияния можно наблюдать над Шпицбергеном в околополуденные часы.

При столкновении энергичных частиц плазменного слоя с верхней атмосферой происходит возбуждение атомов и молекул газов, входящих в её состав. Излучение возбуждённых атомов в видимом диапазоне и наблюдается как полярное сияние. Спектры полярных сияний зависят от состава атмосфер планет: так, например, если для Земли наиболее яркими являются линии излучения возбуждённых кислорода и азота в видимом диапазоне, то дляЮпитера — линии излучения водорода в ультрафиолете.

Поскольку ионизация заряженными частицами происходит наиболее эффективно в конце пути частицы и плотность атмосферы падает с увеличением высоты в соответствии с барометрической формулой, то высота появлений полярных сияний достаточно сильно зависит от параметров атмосферы планеты, так, для Земли с её достаточно сложным составом атмосферы красное свечение кислорода наблюдается на высотах 200—400 км, а совместное свечение азота и кислорода — на высоте ~110 км. Кроме того, эти факторы обусловливают и форму полярных сияний — размытая верхняя и достаточно резкая нижняя границы.

Полярные сияния наблюдаются преимущественно в высоких широтах обоих полушарий в овальных зонах-поясах, окружающих магнитные полюса Земли — авроральных овалах. Диаметр авроральных овалов составляет ~ 3000 км во время спокойного Солнца, на дневной стороне граница зоны отстоит от магнитного полюса на 10—16°, на ночной — 20—23°. Поскольку магнитные полюса Земли отстоят от географических на ~12°, полярные сияния наблюдаются в широтах 67—70°, однако во времена солнечной активности авроральный овал расширяется и полярные сияния могут наблюдаться в более низких широтах — на 20—25° южнее или севернее границ их обычного проявления. Например, на острове Стюарт, лежащем лишь на 47° параллели, сияния происходят регулярно. Маоридаже назвали его «Пылающие ».

В спектре полярных сияний Земли наиболее интенсивно излучение основных компонентов атмосферы — азота и кислорода, при этом наблюдаются их линии излучения как в атомарном, так и молекулярном (нейтральные молекулы и молекулярные ионы) состоянии. Самыми интенсивными являются линии излучения атомарного кислорода и ионизированных молекул азота.

Свечение кислорода обусловлено излучением возбужденных атомов в метастабильных состояниях с длинами волн 557.7 нм (зелёная линия, время жизни 0.74 сек.) и дублетом 630 и 636.4 нм (красная область, время жизни 110 сек). Вследствие этого красный дублет излучается на высотах 150—400 км, где вследствие высокой разреженности атмосферы низка скорость гашения возбужденных состояний при столкновениях. Ионизированные молекулы азота излучают при 391.4 нм (ближний ультрафиолет) 427.8 нм (фиолетовый) и 522.8 нм (зелёный). Однако, каждое явление обладает своей неповторимой гаммой, в силу не постоянства химического состава атмосферы и погодных факторов.

Спектр полярных сияний меняется с высотой и зависимости от преобладающих в спектре полярного сияния линий излучения полярные сияния делятся на два типа: высотные полярные сияния типа A с преобладанием атомарных линий и полярные сияния типа B на относительно небольших высотах (80-90 км) с преобладанием молекулярных линий в спектре вследствие столкновительного гашения атомарных возбужденных состояний в сравнительно плотной атмосфере на этих высотах.

Полярные сияния весной и осенью возникают заметно чаще, чем зимой и летом. Пик частотности приходится на периоды, ближайшие к весеннему и осеннему равноденствиям. Во время полярного сияния за короткое время выделяется огромное количество энергии. Так, за одно из зарегистрированных в 2007 году возмущений выделилось 5·1014 джоулей, примерно столько же, сколько во время землетрясения магнитудой 5,5.

При наблюдении с поверхности Земли полярное сияние проявляется в виде общего быстро меняющегося свечения неба или движущихся лучей, полос, корон, «занавесей». Длительность полярных сияний составляет от десятков минут до нескольких суток.

Считалось, что полярные сияния в северном и южном полушарии являются симметричными. Однако одновременное наблюдение полярного сияния в мае 2001 из космоса со стороны северного и южного полюсов показало, что северное и южное сияние существенно отличаются друг от друга[1].

Давление света        

давление, производимое светом на отражающие или поглощающие тела. Д. с. впервые было экспериментально открыто и измерено П. Н. Лебедевым (1899). Величина Д. с. даже для самых сильных источников света (Солнце, электрическая дуга) ничтожно мала и маскируется в земных условиях побочными явлениями (конвекционными токами, радиометрическими силами, см. Радиометрический эффект), которые могут превышать в тысячи раз величину Д. с. Для обнаружения Д. с. Лебедев изготовил специальные приборы и проделал опыты, представляющие замечательный пример искусства эксперимента. Основной частью прибора Лебедева служили плоские лёгкие крылышки (диаметром 5 мм) из различных металлов (платина, алюминий, никель) и слюды (рис. 1). Крылышки подвешивались на тонкой стеклянной нити и помещались внутри стеклянного сосуда G (рис. 2), из которого выкачивался воздух. На крылышки с помощью специальной оптической системы и зеркал направлялся свет от сильной электрической дуги В.Перемещение зеркал S1, S4 давало возможность изменять направление падения света на крылышки. Устройство прибора и методика измерения позволили свести до минимума мешающие радиометрические силы и обнаружить Д. с. на отражающие или поглощающие крылышки, которые под его воздействием отклонялись и закручивали нить. В 1907—10 Лебедев исследовал Д. с. на газы, что было ещё труднее, так как Д. с. на газы в сотни раз меньше, чем на твёрдые тела.        

 Результаты экспериментов Лебедева и более поздних исследователей полностью согласуются со значением Д. с., определённым на основе электромагнитной теории света (Дж. К. Максвелл, 1873), что явилось ещё одним важным подтверждением теории электромагнитного поля Фарадея — Максвелла. Согласно электромагнитной теории света, давление, которое оказывает на поверхность тела плоская электромагнитная волна, падающая перпендикулярно к поверхности, равно плотности и электромагнитной энергии (энергии, заключённой в единице объёма) около поверхности. Эта энергия складывается из энергии падающих и энергии отражённых от тела волн. Если мощность электромагнитной волны, падающей на 1 см2 поверхности тела, равна S эрг/см2( сек), коэффициент отражения электромагнигной энергии от поверхности тела равен R, то вблизи поверхности плотность энергии u = S• (1+R)/c (с — скорость света). Этой величине и равно Д. с. на поверхность тела: р = S (1 + R)/c (эрг/см3 или дж/м3). Например, мощность солнечного излучения, приходящего на Землю, равна 1,4•106 эрг/(см2(сек) или 1,4•103 вт/м2,следовательно, для абсолютной поглощающей поверхности (когда R = 0) р = 4,3 •10-5lдин/см2 = 4,3•10-6 н/м2. Общее давление солнечного излучения на Землю равно 6•1013 дин (6•108 н), что в 1013 раз меньше силы притяжения Солнца.        

 Изотропное равновесное излучение  также оказывает давление на  систему (тело), с которой оно находится  в термодинамическом равновесии:         

 р = u/3=1/3•σT4 ,        

где σ — постоянная Стефана — Больцмана, Т — температура излучения. Существование Д. с. показывает, что поток излучения обладает не только энергией, но и импульсом, а следовательно, и массой.        

 С точки зрения квантовой  теории, Д. с. — результат передачи телам импульса Фотонов (квантов энергии электромагнитного поля) в процессах поглощения или отражения света. Квантовая теория даёт для Д. с. те же формулы.        

 Особо важную роль Д. с. играет  в двух противоположных по  масштабам областях явлений —  в явлениях астрономических и  явлениях атомарных. В астрофизике  Д. с. наряду с давлением газа  обеспечивает стабильность звёзд (См. Звёзды), противодействуя силам гравитационного сжатия (при температуре Давление света 107 градусов в недрах звёзд Д. с. достигает десятков млн. атмосфер). Д. с. существенно для динамики околозвёздного и межзвёздного газа; действием Д. с. объясняются некоторые формы кометных хвостов (см. Кометы). Д. с. вызывает возмущение орбит искусственных спутников Земли (особенно лёгких спутников-баллонов типа «Эхо» с большой отражающей поверхностью). К атомарным эффектам Д. с. относится «световая отдача», которую испытывает возбуждённый атом при испускании фотона. К Д. с. близко явление передачи гамма-квантами части своего импульса электронам, на которых они рассеиваются (см. Комптон-эффект (См. Комптона эффект)), или ядрам атомов кристалла в процессах излучения и поглощения (см. Мёссбауэра эффект).        

 

 

         Лит.: Lebedew P., Untersuchungen liber die Dnickkräfte des Lichtes, «Annalen der Physik», 1901, fasc. 4, Bd 6, S. 433—458; Лебедев П. Н., Избр. соч., М. — Л., 1949: Ландсберг Г. С., Оптика, 4 изд., М., 1957; Эльясберг П. Е., Введение в теорию полета искусственных спутников Земли, М., 1965.        

        

Рис. 1. Различные системы (I, II, III) крылышек в опыте Лебедева; О — платиновая петля, С — кардановый подвес.        

        

Рис. 2. Схема опыта Лебедева: В — источник света (угольная дуга); С — конденсор; D — металлическая диафрагма; К — линза; W — стеклянный сосуд с водой с плоскопараллельными стенками, играющими роль светофильтра; S1—S6 — зеркала; L1 и L2 — линзы; R — изображение диафрагмы D на крылышках (на рис. не показаны) внутри стеклянного баллона G; P1 и P2 — стеклянные пластинки; Т — термобатарея; R1 — изображение диафрагмы D на поверхности термобатареи.

Первые попытки определения скорости света

свет несет с собой энергию, и были указаны методы ее регистрации. Естественно встает вопрос, c какой скоростью распространяется световая энергия. Попытки ответить на этот вопрос предпринимались уже давно. Так, еще Г. Галилей (1607 г.) пытался определить скорость распространения света с помощью следующего простого опыта. Представим себе двух наблюдателей   и   (рис. 306), находящихся на расстоянии   друг от друга и снабженных одинаковыми хорошо выверенными часами. Если наблюдатель   в некоторый момент пошлет световой сигнал (например, быстро откроет заслонку фонаря), а наблюдатель   отметит по своим часам тот момент, когда он увидит этот сигнал, то можно будет определить время , за которое свет прошел данный путь  , и, следовательно, определить скорость света  .

Рис. 306. Неудачные попытки определить скорость света

Опыт можно значительно усовершенствовать и упростить, если вместо второго наблюдателя поместить зеркало. Наблюдатель, открывающий фонарь, отметит также и момент, когда световой сигнал, отразившийся от зеркала, вернется к нему, т. е. пройдет путь  . Таким образом удалось бы определить скорость света, располагая лишь одними часами. Однако опыт Галилея, как в первом, так и во втором вариантах не дал определенных результатов. Естественно, что регистрация момента выхода и прихода сигнала делается с некоторыми ошибками. Скорость же света оказалась настолько большой, что время прохождения светом сравнительно небольших расстояний, на которые можно было отдалить пункты   а  , было значительно меньше указанных ошибок. Поэтому принципиально правильный опыт не дал удовлетворительного результата.

Для улучшения дела надо было или весьма значительно увеличить расстояние  , или очень сильно повысить точность измерения небольших промежутков времени. Оба эти усовершенствования и были внесены впоследствии и привели к благоприятным результатам.

    1. Определение скорости света Рёмером.

В методе датского астронома Олафа Рёмера (1644—1710), предложенном в 1675 г., были использованы огромные расстояния, с которыми приходится иметь дело астроному. Световым сигналом, посылавшимся из пункта А, служили затмения спутника Юпитера (например, моменты выхода этого спутника из тени Юпитера); наблюдатель на Земле регистрировал момент затмения. 
 
Обращение ближайшего к Юпитеру спутника происходит за 13/4 дня, т. е. затмения его следуют весьма часто одно за другим. Рёмер установил, что наблюдаются затмения не вполне регулярно. Если, например, начиная с положения Земли З1 (рис. 307), предвычислить моменты ожидаемых затмений и произвести наблюдения при положении Земли примерно через 1/2 года, то момент затмения оказывается запоздавшим против вычисленного почти на 16 мин. Однако те же вычисления дают правильный результат, если вновь провести наблюдения к моменту положения Земли ЗЗ, т. е. еще примерно через 1/2 года. 
 
Рис. 307. К определению скорости света по Рёмеру: Ю1З1 — Земля З1 находится между Юпитером Ю1 и Солнцем С; Ю2З2 — Земля З2 и Юпитер Ю2 находятся по разные стороны Солнца; Ю3З3 — следующее взаимное расположение Земли З3 и Юпитера ЮЗ 
Рёмер дал простое объяснение этим явлениям: надо учитывать время, необходимое для того, чтобы свет прошел добавочное расстояние, равное поперечнику земной орбиты. Это добавочное расстояние по современным измерениям равно 2,99•108 км, добавочное время — 966,4 с, отсюда скорость света с приблизительно равна 300 000 км/с. Сам Рёмер нашел для скорости света с значение 215 000 км/с.

    1. Определение скорости света по методу вращающегося зеркала.

Французский физик Леон Фуко (1819—1868) применил в 1862 г. очень точный способ определения времени . прохождения света между двумя пунктами А и В, благодаря чему удалось надежно измерить скорость света, не прибегая к чрезмерно большим расстояниям между А и В. Световой сигнал, вышедший по направлению SA (рис. 308), отражался вращающимся зеркалом А к неподвижному зеркалу В. Это последнее делалось сферическим с очень большим радиусом кривизны R, так что центр его совпадал с зеркалом A. Благодаря такому устройству свет при любом положении зеркала А распространялся вдоль радиуса зеркала В, падал перпендикулярно на его поверхность и после отражения шел вновь по радиусу зеркала B, т. е. возвращался к зеркалу А. Однако за время т, в течение которого свет проходил путь от A до В и обратно (т. е. путь, равный 2R), зеркало А успевало повернуться на небольшой угол а, и свет отражался по направлению AS', 
 
Рис. 308. К определению скорости света по методу вращающегося зеркала 
составляющему угол 2a с направлением SA. Измерив угол 2a и зная угловую скорость вращения зеркала, можно определить время t, а следовательно, и скорость света с=2R/t. 
 
В одном из опытов Фуко расстояние АВ=4м, частота вращения зеркала N=800 с-1, угол поворота зеркала a=27,3", следовательно, для этих данных 
 
Среднее значение скорости света, полученное Фуко, равнялось 298 000 км/с. 
 
Вводя на пути света АВ трубу с водой, Фуко смог непосредственно измерить скорость распространения света в воде и получил значение, в 4/3 раза меньшее, чем в воздухе, в соответствии с представлениями Гюйгенса (см. § 130). 
 
Введя ряд остроумных усовершенствований в метод вращающегося зеркала, американский физик Альберт Майкельсон (1852—1931) значительно повысил точность определения скорости света. По его определениям (1927 г.) с=299 796 км/с. За последние годы лабораторные методы определения скорости света существенно усовершенствованы. В их основу положены независимые измерения длины световой волны и ее частоты. Это позволило К. Ивенсону с сотрудниками в 1972 г. определить скорость света с точностью 0,2 м/с: с = 299 792 456,2 ± 0,2 м/с. Однако эти результаты требуют дальнейшего подтверждения. В 1973 г. решением Генеральной ассамблеи Международного комитета по численным данным для науки и техники, обобщившим все известные экспериментальные данные, скорость света в вакууме принято считать равной 
с = 299 792 458 ±1,2 м/с. 
Для всех практических расчетов мы будем принимать скорость света в вакууме равной 300 000 км/с (3•108 м/с). 
 
Колоссальная с точки зрения наших земных масштабов скорость света не так уж велика в масштабах астрономических. Здесь время распространения света измеряется значительными числами. Так, свет идет от Солнца до Земли около 8 мин, а от ближайшей звезды — около 4 лет. За год свет проходит путь примерно в 1013 км. Эта величина оказывается удобной в качестве единицы длины для огромных астрономических расстояний; она называется световым годом. 
 
Наряду с этой единицей астрономы пользуются парсеком. Парсек (т. е. параллакс-секунда) — это расстояние, с которого радиус земной орбиты (150 млн. км) виден под углом 1". Нетрудно подсчитать, что парсек равен примерно 31/4 светового года. 
 
В настоящее время имеется возможность независимо измерять частоту v и длину волны l монохроматического света, поэтому скорость его c=lv может быть найдена и без кинематических измерений, осуществляемых прежними способами.

    1. Другие способы определения скорости света.

Определение скорости света по наблюдению аберрации в 1725-1728 гг. Брадлей предпринял наблюдение с целью выяснить, существует ли годичный параллакс звезд, т.е. кажущееся смещение звезд на небесном своде, отображающее движение Земли по орбите и связанное с конечностью расстояния от Земли до звезды. 

Брадлей действительно обнаружил подобное смещение. Он объяснил наблюдаемое явление, названное им аберрацией света, конечной величиной скорости распространения света и использовал его для определения этой скорости.

Зная угол α и скорость движения Земли по орбите v, можно определить скорость света c.

У него получилось значение скорости света равной 308000 км/с. 

Важно заметить, что аберрация света связана с изменением направления скорости Земли в течение года. Постоянную скорость, как бы велика она ни была, нельзя обнаружить с помощью аберрации, ибо при таком движении направление на звезду остается неизменным и нет возможности судить о наличии этой скорости и о том, какой угол с направлением на звезду она составляет. Аберрация света позволяет судить лишь об изменении скорости Земли.

 

В 1849 г. впервые определение скорости света выполнил вы лабораторных условиях А. Физо. Его метод назывался методом зубчатого колеса. Характерной особенностью его метода является автоматическая регистрация моментов пуска и возвращения сигнала, осуществляемая путем регулярного прерывания светового потока (зубчатое колесо).

 

Рис 3 . Схема опыта по определению скорости света методом зубчатого колеса.  

 

Свет от источника проходил через прерыватель (зубья вращающегося колеса) и, отразившись от зеркала, возвращался опять к зубчатому колесу. Зная расстояние между колесом и зеркалом, число зубьев колеса, скорость вращения, можно вычислить скорость света.

Зная расстояние D, число зубьев z, угловую скорость вращения (число оборотов в секунду) v, можно определить скорость света. У него получилось она равной 313000 км/с. 

 

 

 Разрабатывали много способов, чтобы еще повысить точность измерений. Вскоре даже стало необходимо учитывать показатель преломления в воздухе. И вскоре в 1958 г. Фрум получил значение скорости света равной 299792,5 км/с, применяя микроволновый интерферометр и электрооптический затвор (ячейку Керра).

Свет как форма материи

 
Световое излучение - это обычное электромагнитное излучение достаточно узкого диапазона частоты. То есть - разновидность материи. Думаю, Вы не станете возражать, если я скажу, что одна разновидность материи может появиться только из другой разновидности. В данном случае - из электрического тока. Электрический ток - это поток электронов. Измерения показывают, что электрический ток в цепи не меняется: сколько электронов вошло в лампочку по одному проводу, ровно столько же уйдёт по другому. Кроме того, исчезновение электронов в лампе с последующим их преобразованием в излучение противоречит закону сохранения заряда. Электроны могут дать гамма-квант излучения при аннигиляции с позитроном, но в лампе позитронам взяться неоткуда. И тогда возникает парадоксальная ситуация: разновидность материи в форме светового излучения возникает в самом прямом смысле слова на пустом месте, возникает из абсолютной пустоты. Не знаю, как для Вас, а для меня такого принципиально быть не может.

Вот моё объяснение этому феномену: световое излучение возникает в электролампе как результат реакции физического вакуума на его деформацию электрическим током. В квантовой механике есть такое понятие: физический вакуум. Это не пустота, а очень сложная структура, которая формирует пространство, порождает из себя вещество, участвует во многих процессах, но не видима нами из-за отсутствия у нас нужных органов чувств и потому кажущаяся нам пустотой (это очень важное уточнение: вакуум не является пустотой, но кажется нам пустотой). Раньше эту структуру называли эфир. Когда в электрической цепи крутится ротор электрогенератора, он своим вращательным движением деформирует структуру вакуума и отдаёт в него энергию, которая идёт на генератор от внешнего привода. А когда затем электроны в лампе заставляют атомы нити накаливания колебаться более интенсивно, чем обычно, эти колебания снова деформируют вакуум, а он реагирует на это тем, что испускает световой квант. Так как вакуум сам является разновидностью материи, все отмеченные мною выше противоречия исчезают.

Может, Вам известен такой феномен как разрушение моста под сапогами марширующих солдат. Когда солдаты пересекают мост строевым шагом, в конструкциях моста могут возникнуть резонансные колебания и мост рухнет. Если же солдаты идут вразброд, мост остаётся целым. Для разрушения моста нужна огромная энергия, которую сами солдаты сообщить мосту не могут. Резонанс тоже не содержит в себе никакой энергии. Но он способствует выделению энергии из физического вакуума. Так вот в зависимости от конкретных условий вакуум может реагировать на вносимую в него деформацию либо световым излучением (как в лампе), либо механическим разрушением (как в случае моста). Вполне возможно, что есть и другие формы реакции вакуума на вносимую в него деформацию.

 


Информация о работе Электромагнитная природа света