Двигатели внутреннего сгорания

Автор работы: Пользователь скрыл имя, 27 Декабря 2012 в 20:09, курсовая работа

Краткое описание

Внутренней энергией обладают все тела – земля, камни, облака. Однако извлечь их внутреннюю энергию довольно трудно, а порой и невозможно. Наиболее легко на нужды человека может быть использована внутренняя энергия лишь некоторых, образно говоря, "горючих" и "горячих" тел. К ним относятся: нефть, уголь, горячие источники вблизи вулканов, теплые морские течения и т.п. Рассмотрим один из примеров использования превращения внутренней энергии названных тел в механическую энергию. Применение двигателей внутреннего сгорания чрезвычайно разнообразно: они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Содержание

ВВЕДЕНИЕ……………………………………………………………………. 4
ГЛАВА 1. ИСТОРИЯ СОЗДАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ (ДВС)…………………………………………………………… 6
ГЛАВА 2. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ДВС………….......... 9
КРИВОШИПНО-ШАТУННЫЙ МЕХАНИЗМ.................................. 9
Общие сведения и классификация………………………………… 9
Конструкция кривошипно-шатунного механизма………………. 11
Кинематика кривошипно-шатунного механизма………………... 13
Динамика кривошипно-шатунного механизма………………….. 13
Уравновешивание двигателей внутреннего сгорания…………… 14
Равномерность хода и расчет маховика двигателя………………. 16
ГАЗОРАСПРЕДЕЛИТЕЛЬНЫЙ МЕХАНИЗМ……………………. 19 2.1. Классификация и конструктивный обзор газораспределительных механизмов………………………………………………………………. 19 2.2. Элементы механизма газораспределения………............................. 20
СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ……….……………….. 21 3.1. Классификация систем охлаждения……………………………….. 22 3.2. Жидкостная система охлаждения………………………………….. 24 3.3. Воздушная система охлаждения…………………………………… 25
СИСТЕМА СМАЗКИ ДВИГАТЕЛЯ…….……………………………28 4.1. Классификация и устройство системы смазки……………………. 28
СИСТЕМА ПУСКА И ЗАЖИГАНИЯ ДВС……..………………… 32 5.1. Способы пуска двигателей…………………………………………. 33 5.2. Параметры пускового устройства…………………………………. 34 5.3. Зажигание от магнето……………………………………………… 37 5.4. Электронные системы зажигания……………………………........ 43
6. СИСТЕМА РЕГУЛИРОВАНИЯ ДВС…….……………………… 45 6.1. Теоретические основы регулирования скоростных режимов двигателей ………………………………………………………………… 44 6.2. Классификация и конструкции регуляторов………………………. 48
ГЛАВА 3. ДВС И ПРОБЛЕМЫ ЭКОЛОГИИ…..…………………….. 53 1.1. Вредные выбросы в составе отработавших газов и их воздействие на живую природу ………………………………………………………….. 53 1.2. Законодательные ограничения выбросов вредных веществ …….. 58 1.3. Альтернативные топлива …………………………………………… 62
ЗАКЛЮЧЕНИЕ………………………………………………………………. 65
СПИСОК ЛИТЕРАТУРЫ ……………………………………………

Прикрепленные файлы: 1 файл

Двигатель внутьрееннего сгорания(ПЕРЕДЕЛКА.doc

— 1.15 Мб (Скачать документ)

Из промежуточного бака масло подается насосом в  нагнетающий маслопровод двигателя. Очистка масла от пены необходима для обеспечения нормальной работы двигателя, так как при поступлении в масляный насос пены подача масла последним уменьшается.

При комбинированной системе смазки, применяемой в подавляющем большинстве современных автомобильных и тракторных двигателей, используют как первый, так и второй способы подвода масла. Обычно под давлением, создаваемым масляным насосом, смазываются лишь наиболее ответственные трущиеся детали двигателя – подшипники коленчатого и распределительного валов. Во многих двигателях под давлением также смазываются распределительные шестерни, поршневые пальцы, толкатели и др. Остальные трущиеся детали смазывают разбрызгиванием и самотеком.

В большинстве  современных автомобильных и  тракторных двигателей подвергаются обильной смазке нижняя часть зеркала цилиндра и кулачки распределительного вала. Смазка осуществляется струями масла, вытекающими через направляющее отверстие в кривошипной головке шатуна при совпадении его с выходным отверстием в шатунной шейке.

Для увеличения срока службы масла и уменьшения износа трущихся деталей в большинстве  двигателей устанавливают фильтры  грубой и тонкой очистки масла. С  этой же целью масло из картера  двигателя забирается через плавающий  маслоприемник из верхнего, наименее загрязненного тяжелыми примесями слоя.

В двигателях с  напряженным режимом работы, главным  образом двигателях грузовых автомобилей  и тракторов, применяются радиаторы  для охлаждения масла. Необходимое  давление в нагнетающей магистрали поддерживается редукционными клапанами.

Схема комбинированной системы смазки двигателя. Эта система состоит из следующих узлов: неподвижного, маслоприемного фильтра 1, масляного насоса 2, маслопроводов, пластинчатого фильтра грубой очистки 3, центробежного фильтра тонкой очистки 4, редукционного и перепускного клапанов, маслоналивного патрубка и трубки для подачи масла в радиатор.

В двигателе, кроме  подшипников коленчатого и распределительного валов, принудительно смазываются  опоры промежуточного валика привода  распределителя зажигания, масляного насоса, толкатели.

Втулки коромысел  смазываются пульсирующим потоком  масла. К остальным трущимся деталям  масло поступает самотеком и  при разбрызгивании. 

Рис. 4.1. Комбинированная система смазки двигателя

Масло фильтруется  в фильтрах грубой 3 и тонкой очистки 4, а также установленным на маслоприемнике 1 сетчатым фильтром. Пластинчатый фильтр грубой очистки включен в масляную магистраль последовательно. Для пропуска масла мимо фильтра грубой очистки (в случае его загрязнения, а также при пуске холодного двигателя, когда сопротивление фильтра велико) в корпусе фильтра установлен перепускной шариковый клапан. Для современных автомобильных карбюраторных двигателей рассмотренная система смазки является типичной.

В систему смазки дизелей и многих карбюраторных двигателей грузовых автомобилей включают масляные радиаторы. В дизелях предусматривают также приспособления для охлаждения струями масла наиболее нагретых трущихся деталей двигателя.

  1. СИСТЕМА ПУСКА И ЗАЖИГАНИЯ ДВИГАТЕЛЕЙ

Система пуска автомобильного или тракторного двигателя осуществляет вращение коленчатого вала с необходимым числом оборотов до получения первых вспышек.

Подводимая  пусковым устройством энергия расходуется  на преодоление работы сил трения, приведение в движение вспомогательных  механизмов (водяного, масляного и  топливного насосов, генератора, вентилятора  и др.), совершение ходов впуска и  выпуска в четырехтактных и совершение процесса газообмена в двухтактных двигателях, сообщение кинетической энергии движущимся массам двигателя и преодоление в начальный период пуска работы на сжатие рабочей смеси (или воздуха в дизелях).

 

 

 

 

5.1. Способы пуска двигателей

В двигателях внутреннего сгорания применяют следующие способы пуска двигателей (рис. 5.1).

Рис. 5.1. Системы пуска ДВС

Пуск электростартером является наиболее часто применяемым способом пуска автомобильных двигателей. Для пуска тракторных двигателей лесозаготовительной техники электростартеры применяют в редких случаях.

Пневматические стартеры устанавливают на двигатели в  некоторых, очень редких случаях. Это  специальные воздушные двигатели, в которые поступает сжатый воздух из баллонов.

Сжатый воздух при пуске двигателя может подаваться также непосредственно в его цилиндры (пневматический пуск). Перед пуском некоторых двигателей сжатый воздух подается в баллоны от специального карбюраторного двигателя, соединенного с компрессором.

Инерционные стартеры применяют для пуска автомобильных и тракторных двигателей. Принцип действия этих стартеров основан на использовании кинетической энергии специального маховика. Этот маховик перед пуском двигателя раскручивается от руки или от электродвигателя до большого числа оборотов, после чего вращение маховика при помощи механизма включения передается коленчатому валу.

В некоторых  конструкциях вместо специального маховика используют маховик двигателя, устанавливаемый  в этом случае на коленчатом валу свободно и соединяющийся с ним через фрикционную муфту. Во время пуска двигателя маховик при выключенной муфте раскручивается от руки до необходимых оборотов, после чего муфта включается и коленчатый вал с маховиком вращаются как одно целое.

Пусковые четырех- или двухтактные карбюраторные  двигатели применяют наиболее часто  для пуска тракторных дизелей  большой мощности. Это обычно одно- или двухцилиндровые двигатели с зажиганием от магнето, устанавливаемые на блок- картерах дизелей. Пуск вспомогательных двигателей производится от руки или электростартером.

5.2. Параметры пускового устройства

Пусковое число  оборотов – число оборотов коленчатого вала, необходимое для обеспечения пуска, зависит от типа двигателя.

Пусковое число  оборотов карбюраторных двигателей должно обеспечивать: 1) образование  в конце хода сжатия смеси, находящейся  в пределах воспламеняемости; 2) получение интенсивной искры, достаточной для воспламенения рабочей смеси; 3) получение температур и давлений смеси, достаточных для повышения числа оборотов коленчатого вала от пусковых до устойчивых.

Пусковое число  оборотов карбюраторных двигателей n = = 0.8–1 c-1.

Пусковое число  оборотов дизелей должно быть достаточным  для обеспечения надежного воспламенения  впрыскиваемого в цилиндр топлива. При малом числе оборотов процесс  сжатия протекает относительно медленно, что является причиной повышенного  теплообмена между сжимаемыми газами и поверхностью соприкасающихся с ними деталей, значительной утечки этих газов через поршневые кольца и, как следствие, причиной недостаточно высоких температур конца сжатия. Кроме того, температура в конце процесса сжатия зависит от температуры воздуха, подаваемого в цилиндры (рис. 5.2).

Для дизельных  ДВС температура устойчивого  воспламенения топлива Tвос ? 575K » 300  C.

Для получения  необходимой температуры конца  сжатия пусковые обороты дизелей должны быть n = 2–4 c-1 (120–240 об./мин) при температуре минус 10–0 C. При более низких температурах применяют устройства предпусковой тепловой подготовки двигателей.

Рис. 5.2. Температура в конце процесса сжатия

Мощность пускового  устройства – мощность, достаточная  для прокручивания коленчатого вала с пусковым числом оборотов.

Мощность, необходимая  для вращения коленчатого вала, КВт:

,

где Мсопр – момент сопротивления вращению коленчатого вала, Нм.

Сопротивление вращению коленчатого вала зависит  от многих причин, в том числе  от теплового состояния двигателя. С понижением температуры двигателя сопротивление возрастает. В дизельных ДВС высокие давления конца сжатия и большие величины поверхностей трения и масс движущихся деталей являются причиной значительных сопротивлений.

Момент сопротивления вращению коленчатого вала равен:

,

где k – коэффициент  пропорциональности;

Vh – рабочий объем цилиндра, л;

i – число  цилиндров.

Для карбюраторных  ДВС k = 35–40 Hм/л, для дизельных ДВС k = 60–70 Hм/л.

Мощность пускового  устройства (КВт) равна:

,

где ?пуск – коэффициент полезного действия механизма передачи вращения от пускового устройства на коленчатый вал.

Система зажигания  бензиновых двигателей служит для принудительного  воспламенения рабочей смеси, которое  осуществляется в результате теплового воздействия электрического разряда между электродами свечей зажигания на молекулы смеси.

Электрическое напряжение, при котором происходит искровой разряд, называют пробивным  напряжением Uпр.

Повышение агрегатных мощностей современных двигателей с принудительным воспламенением рабочей смеси достигается, как правило, повышением степени сжатия, увеличением частоты вращения коленчатого вала и числа цилиндров. В этих условиях возрастают требования, предъявляемые к системе зажигания. При увеличении степени сжатия и работе двигателя на обедненной смеси необходимо увеличивать электрическое напряжение между электродами свечи зажигания и энергию электрической искры.

Повышение частоты  вращения коленчатого вала и числа  цилиндров двигателя приводит к  возрастанию числа искровых разрядов в единицу времени и сокращению продолжительности каждого из них. При этом энергия искрового разряда должна быть достаточной для надежного воспламенения рабочей смеси, имеющей различные параметры и состав.

Для своевременного воспламенения рабочей смеси необходимо изменять угол опережения зажигания при изменении скоростного и нагрузочного режимов работы двигателя.

5.3. Зажигание от магнето

При батарейном зажигании ток низкого напряжения, получаемый от аккумуляторной батареи  или генератора, преобразовывается в ток высокого напряжения при помощи индукционной катушки, а ток высокого напряжения распределяется по свечам цилиндров двигателя специальным распределителем. Ток низкого напряжения, получаемый от аккумуляторной батареи или генератора, используется не только для воспламенения смеси, но и для питания различных потребителей (освещение, сигнализация и др.).

В отличие от батарейного зажигания, при зажигании  от магнето источник тока низкого  напряжения, преобразователь тока и  распределитель тока высокого напряжения объединены в одном агрегате. Следовательно, магнето представляет собой прибор, вырабатывающий ток низкого напряжения, преобразующий его в ток высокого напряжения и распределяющий ток высокого напряжения по свечам цилиндров двигателя.

При зажигании  от магнето ток низкого напряжения имеет переменное направление и, будучи преобразованным в ток  высокого напряжения, используется только для воспламенения смеси.

Зажигание от магнето  в настоящее время применяется  у пусковых двигателей дизельных тракторов, в двигателях передвижных электростанций и ряда других.

По конструктивному  исполнению магнето бывают: с вращающимся  якорем, с вращающимся магнитным  коммутатором или с вращающимся  магнитом. В настоящее время преобладающее  распространение имеет магнето с вращающимся магнитом, принципиальная схема, рабочий процесс и конструкция которого рассматриваются далее.

Магнитом (ротором) является двухполюсный магнит, вращающийся  вокруг своей продольной оси между  полюсными башмаками 2 стоек сердечника 3. Железный сердечник с двумя стойками имеет П-образную форму и соединен с массой. На сердечнике намотаны две обмотки: первичная 4 и вторичная 5. Первичная обмотка 4 припаяна одним концом к сердечнику 3, а другим – к неподвижному контакту 6 механического прерывателя. Вторичная обмотка 5 одним концом соединена с первичной, а другим – через центральный контакт и угольную щетку 7 с токоприемником вращающегося электрода. Последний закреплен на барабане (роторе) распределителя. Рычажок 8 подвижного контакта механического прерывателя соединен через пружину с массой. Кулачок 9 механического прерывателя закреплен при помощи винта на магните и вращается вместе с ним. Параллельно контактам механического прерывателя включен конденсатор 10. Барабан (ротор) распределителя вращается между двумя секторами 12 статора. В секторы статора запрессованы неподвижные электроды, к клеммам которых подключены провода от свечей 13. Магнит (ротор) 1 приводится во вращение от двигателя, а барабан распределителя – шестеренчатой передачей от ротора магнита. Выключение зажигания производится выключателем 14. При выключении первичная обмотка замыкается на массу, минуя прерыватель. Искровой промежуток 15 служит для предохранения изоляции вторичной обмотки от повреждения в тех случаях, когда напряжение значительно возрастает.

Рис. 5.8. Зажигание от магнето

Рабочий процесс  магнето заключается в следующем. При вращении ротора магнето между  полюсными башмаками стоек сердечника через сердечник проходит магнитный  поток, пересекающий витки обмоток. За один полный оборот ротора магнитный поток, непрерывно изменяясь, дважды достигает максимальной величины (0 и 180°) и дважды меняет направление.

При вращении ротора в первичной обмотке индуктируется  ЭДС, величина которой непрерывно изменяется. Согласно закону электромагнитной индукции ЭДС пропорциональна скорости изменения магнитного потока.

Информация о работе Двигатели внутреннего сгорания