Образовательная ткань – меристема

Автор работы: Пользователь скрыл имя, 04 Мая 2014 в 19:15, реферат

Краткое описание

1.Понятие о развитии, росте и дифференциации растений.
2. Строение и классификация меристем.
3.Рост и специализация клеток производных меристем.

Прикрепленные файлы: 1 файл

Тканями называют группы клеток.doc

— 110.50 Кб (Скачать документ)

Согласно генетической классификации, меристемы делят на первичные, так или иначе связанные с меристемами зародыша и апикальными меристемами, и вторичные, развивающиеся позднее, когда верхушечный рост осевых органов закончен и начинается их утолщение. Это разделение условно. Камбий, например, закладывается еще до окончания верхушечного роста, а иногда и задолго до его начала, так как имеются сведения о заложении камбия в осевых частях зимующих почек.

В меристемы разделены на 2 большие группы: общие и специальные. Специальные меристемы участвуют в образовании и первичных, и вторичных постоянных тканей, последние – производные камбия, независимо от его происхождения, и феллогена. При этом эпитеты «первичный» и «вторичный» несут в себе единственную информацию–последовательность образования постоянных тканей в процессе развития органов растения.

Принято выделять как особый тип интеркалярные меристемы, осуществляющие вставочный рост. Так удлиняются междоузлия на ранних стадиях развития побега, развиваются черешки листьев. Их принципиальное отличие от всех других меристем состоит в том, что наряду с недифференцированными клетками они имеют и клетки, находящиеся на разных стадиях дифференциации. Поэтому более целесообразно говорить не об интеркалярных меристемах, а о зонах интеркалярного, или вставочного роста.

Цитологические особенности меристем. Наиболее типично выражены у апикальных меристем. Клетки – изодиаметрические многогранники – не разделены межклетниками. Клеточные стенки тонкие, с малым содержанием целлюлозы. Цитоплазма густая, ядро крупное, расположено в центре. В цитоплазме большое число рибосом и митохондрий (идет энергичный синтез белков и других веществ). Многочисленные вакуоли очень мелкие.

Клетки латеральных меристем неодинаковы по величине и форме. Это связано с различиями клеток постоянных тканей, которые из них образуются, Так, например, в камбии есть паренхимиые и прозенхимные клетки. Из паренхимных инициалей образуется паренхима проводящих комплексов, а из прозенхимных — собственно проводящие элементы.

Рост и дифференцировка клеток меристемы. Процесс сопровождается увеличением объема и изменением формы клеток. Тонкие клеточные стенки способны к растяжению, клетки приобретают размеры и форму, характерные для постоянной ткани. Рост соседних клеток происходит обычно согласованно, что обеспечивает сохранность плазмодесм между клетками. Протопласты клеток, связанные плазмодесмами, образуют единую живую систему — симпласт.

Иногда клетки растут иначе, внедряясь между соседними, их стенки скользят относительно друг друга. Так могут возникать длинные прозенхимные клетки механических тканей и млечников.

Конкретный путь развития клеток меристем определяется их положением в растении — единой системе, способной к саморегуляции. Потенциально клетки меристемы могут превращаться в различные ткани.

 

3.Рост и специализация клеток производных меристем.

Клетки, образованные меристемами, после периода роста, или растяжения, приступают к дифференциации, в результате которой они специализируются в выполнении определенных функций и становятся элементами тех или иных постоянных тканей.

Рост, приводящий к увеличению размеров клетки, сопровождается активизацией синтеза веществ, из которых состоят компоненты цитоплазмы. Растущая клетка сильно вакуолизируется. Нередко в ней возникает крупная центральная вакуоль, оттесняющая цитоплазму к оболочке. Накапливая осмотически активные вещества (сахара, минеральные вещества, органические кислоты и т. п.), вакуоль поглощает большое количество воды. С высокой обводненностью клетки связано увеличение тургорного давления, способствующего растяжению оболочки. Регуляция этого процесса осуществляется гормонами, прежде всего индолил-3-уксусной кислотой (ИУК), поступающей в зону растяжения клеток из верхушек побегов или кончиков корней, где она образуется.

Растяжимость клеточных оболочек в большой степени определяется особенностями их химического состава и субмикроскопической структуры. Так как в процессах роста и последующей дифференциации клетки оболочка играет важную роль, на ее строении следует остановиться подробнее.

Цитокинез, следующий за делением ядра, приводит к образованию двух клеток, разделенных пектиновой межклеточной пластинкой с узкими сквозными канальцами, по которым проходят цитоплазматические тяжи — плазмодесмы, связывающие протопласты клеток.

По мере формирования межклеточной пластинки на нее со стороны каждой клетки накладывается тонкая первичная оболочка, и смежные стенки клеток становятся трехслойными. Их называют срединными пластинками, но в современной литературе допустимо называть срединной пластинкой и одну межклеточную пектиновую пластинку. Первичная оболочка не закрывает плазмодесменные канальцы. Участки оболочки с группами этих канальцев составляют первичное поровое поле. Первичная оболочка состоит из пектиновых веществ и гемицеллюлозы (полуклетчатки), составляющими аморфный матрикс. В него погружены волокнистые скелетные элементы — микрофибриллы целлюлозы, представляющие собой плотные агрегаты длинных, параллельно расположенных молекул.

Содержание целлюлозы в первичной оболочке составляет примерно 2,5%. Микрофибриллы соединены в рыхлую сеть, растягивающуюся при поверхностном росте клетки. Он сопровождается увеличением количества в оболочке веществ матрикса, а также новообразованием микрофибрилл целлюлозы, которые внедряются в матрикс, встраиваясь в существующую сеть. Этот процесс называют интессусцепцией.

Особенности поверхностного роста оболочек определяют два типа роста клеток.

Первый тип характеризуется равномерным ростом оболочки на всем ее протяжении. Такой рост называют симпластическим. Второй тип роста связан с внедрением клетки в пространство, образующееся вследствие расхождения соседних клеток. Такой рост называют интрузивным (от лат. intrusus — внедренный). Отдельные участки оболочки могут расти сильнее других. В этом случае образуются разветвленные клетки. Наиболее активен интрузивный рост у прозенхимных клеток, в которых он сосредоточен на концах. В результате такого роста длина клетки может увеличиться во много раз по сравнению с исходной.

При поверхностном росте наиболее сильное растяжение испытывают участки оболочки, свободные от плазмодесменных канальцев. Имеющиеся в оболочке первичные поровые поля раздвигаются, их число на единицу поверхности клетки сокращается.

Переход от фазы роста к фазе дифференциации происходит постепенно. Этот процесс затрагивает все компоненты протопласта и оболочку клетки, приобретающую ряд новых свойств, усиливающих функциональную активность клеток специализированных постоянных тканей.

Первичная оболочка, существующая у всех клеток на ранних стадиях их развития, сохраняется в течение всей жизни у клеток ассимилирующей ткани, а также в корневых волосках.

Клетки большинства постоянных тканей имеют наряду с первичными также вторичные оболочки, иногда достигающие большой толщины. Вторичная оболочка образуется наложением слоев микрофибрилл целлюлозы на внутреннюю поверхность первичной оболочки. Этот процесс называют аппозицией. Утолщение оболочки происходит постепенно, что проявляется в ее слоистости. Каждый вновь образующийся слой богаче целлюлозой и беднее матриксом, чем предыдущий. Самый молодой слой вторичной оболочки, прилегающий к плазмалемме, часто называют третичной оболочкой. Содержание целлюлозы во вторичной оболочке составляет 90-98 %. В отличие от первичной оболочки, в которой микрофибриллы составляют рыхлую сеть, во вторичной оболочке они расположены параллельно и плотно одна к другой.

Вторичная оболочка обычно выглядит прерывистой, так как над первичными поровыми полями она не откладывается. Первичное поровое поле, окруженное вторичной оболочкой, превращается в пору. Поры, расположенные в смежных стенках соседних клеток, имеют вид канала, пересеченного в середине мембраной поры, называемой также замыкающей пленкой. Длина канала зависит от толщины вторичной оболочки. Такие поры называют простыми. При ее рассмотрении с помощью светового микроскопа мембрана выглядит сплошной, но электронно-микроскопические исследования показывают, что она представляет собой систему тончайших сквозных плазмодесменных канальцев, пересекающих первичные оболочки и разделяющую их межклеточную пластинку. Поры осуществляют симпластическую связь между клетками постоянных тканей. Поры особого типа развиваются в оболочках клеток, проводящих воду. При их формировании вторичная оболочка нависает над первичным поровым полем в виде свода, образуя окаймление. Так как пора одной клетки строго супротивна поре другой клетки, то общая камера двух таких окаймленных пор приобретает очертания двояковыпуклой линзы, пересеченной мембраной поры. Камера каждой поры открывается в полость клетки отверстием, называемым апертурой. Мембрана поры, которая сначала устроена так же, как в простой поре, впоследствии приобретает иное строение. Плазмодесмы разрушаются вследствие лизиса всего содержимого клетки, из поровой мембраны исчезают пектиновые вещества и гемицел- люлоза, остается только сеть микрофибрилл целлюлозы, сквозь которую осуществляется фильтрация воды. В плане окаймленная пора имеет двухконтурные очертания: внешний контур соответствует окаймлению, а внутренний — апертуре поры. У многих хвойных растений поровая мембрана в середине утолщена, образуя торус.

Наряду с окаймленными порами стенки некоторых водопроводящих элементов (сосудов) имеют перфорации — крупные сквозные отверстия, образование которых связано с разрушением части клеточной стенки.

Дифференциация многих клеток сопровождается изменением химического состава их оболочек, приобретающих при этом специфические свойства.

Одревеснение оболочки, очень широко распространенное у высших растений, обусловлено появлением в ней лигнина — высокополимерного аморфного вещества фенольной природы, не растворимого в воде.

Инкрустируя клеточную оболочку, лигнин вытесняет находящийся между микрофибриллами целлюлозы матрикс. Степень одревеснения разных частей оболочки разная. Наиболее сильно одревесневает срединная пластинка, которая содержит от 60 до 90 % всего лигнина оболочки. Сильно одревесневает также первичная оболочка, в которой целлюлозы немного. Интенсивность одревеснения вторичной оболочки уменьшается от ее наружных слоев к внутренним, по мере увеличения в них количества целлюлозы.

Лигнифицированная оболочка теряет эластичность, поэтому одревеснение начинается после окончания роста клеток. Оболочка приобретает твердость, увеличивается ее прочность на сжатие, но уменьшается прочность на изгиб. Естественно, такие особенности оболочек важны для клеток, составляющих механические ткани растений, а также для клеток, участвующих в создании восходящего тока воды с растворенными в ней веществами. Таким образом, одревеснение представляет собой один из важных факторов жизнеобеспечения растений, вызванный их переходом к наземному образу жизни.

Довольно редко в растениях происходит раздревеснение оболочек. Этот процесс может быть естественным и патологическим. Имеются сведения о раздревеснении толстостенных склереид, содержащихся, например, в незрелых плодах айвы, которые при созревании становятся мягкими. Раздревеснение может быть следствием деятельности паразитических грибов, разлагающих лигнин с помощью вырабатываемых ими ферментов. Некоторые виды трутовиков вызывают белую гниль древесины живых деревьев.

Опробковение обусловлено появлением в оболочке суберина, состоящего, главным образом, из насыщенных жирных кислот, в том числе из феллоновой кислоты (С2Н4(ОН)СООН). Суберин устойчив против сильных окислителей, но растворяется в кипящих растворах щелочей. Он откладывается в виде пластинки во вторичной оболочке, но всегда отделен от полости клетки целлюлозной третичной оболочкой. Слои суберина обычно чередуются со слоями воска.

Суберинизированные оболочки практически не проницаемы ни для жидких, ни для газообразных веществ, поэтому клетки с такими оболочками отмирают. Эти клетки приурочены к периферическим тканям стебля и корня, осуществляя защиту растения от потери воды. Опробковение оболочек характерно для клеток пробки, экзодермы. Оно бывает и у клеток, расположенных в глубине органов, например, в клетках эндодермы и клетках, содержащих отложения оксалата кальция. Нередко этот процесс происходит близ мест повреждения. Опробковевшие клетки создают преграду на пути проникновения в растение гиф паразитических грибов, бактерий и вирусов.

Кутинизация обусловлена отложением на поверхности клеток или в толще их оболочек кутина. В химическом отношении он сходен с суберином, но отличается от него составом жирных кислот, среди которых нет феллоновой кислоты. В отличие от суберина кутин не растворяется в концентрированных кипящих щелочах. Кутинизация свойственна, главным образом, наружным стенкам эпидермальных клеток, кутин откладывается на поверхности плодов, кутинизируются оболочки клеток семенной кожуры, клеток хлорофиллоносной ткани листьев, ограничивающих крупные межклетники или воздухоносные полости.

Предшественники кутина, синтезируемые протопластом эпидермальной клетки, проходят через наружную стенку в виде полужидкого продукта. На воздухе они окисляются, полимеризуются и затвердевают, что приводит к образованию кутикулы. Иногда кутин остается внутри оболочки, образуя кутинизированный слой, содержащий наряду с кутином также целлюлозу, пектиновые вещества и воск. На поверхности кутикулы обычно откладывается и эпикутикулярный воск, создающий дополнительную защиту от неблагоприятных факторов внешней среды.

Так же, как и опробковение, кутинизация способствует уменьшению транспирации, однако кутин, в отличие от суберина, склонен к некоторому набуханию, поэтому через кутикулу растение все же теряет некоторое количество воды.

Минерализация, увеличивающая твердость оболочки, состоит в ее инкрустации химическими веществами, вытесняющими матрикс. Минеральные вещества могут откладываться также на внутренней и наружной поверхностях оболочки, а иногда и внутри нее. Чаще всего в оболочках встречаются кремнезем и соли кальция, в том числе углекислая известь и оксалаты (соли щавелевой кислоты).

Ослизнение оболочки происходит вследствие ее химического перерождения, приводящего к образованию углеводов-пентозанов, гексозанов и их производных. Эти вещества не растворимы в спирте, эфире, сероуглероде. В воде они сильно набухают. Так как разные вещества при набухании имеют разную консистенцию, их делят на сильно расплывающиеся слизи и более клейкие, вытягивающиеся в нити камеди. Четких различий между ними нет. Сухие слизи и камеди, а также содержащие их оболочки, твердые, хрупкие, нередко они имеют роговую консистенцию, но при набухании становятся желеобразными.

Набухшие семена с ослизнившейся кожурой лучше прикрепляются к почве. Ослизнение клеток корневого чехлика усиливает поступление воды к растущему кончику корня. С ослизнением части оболочек водопроводящих элементов связано образование перфораций. Ослизнение оболочек наружных клеток спорангиев и гаметангиев способствует их вскрыванию.

Информация о работе Образовательная ткань – меристема