Современная биотехнология: достижения, перспективы

Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 18:51, реферат

Краткое описание

Революционизирующим этапом в развитии биотехнологии стало использование генных и клеточных биотехнологий, которые бурно развивались в последние десятилетия и уже существенно повлияли на разные аспекты жизни человека: здоровье, медицину, питание, демографию, экологию. Эти технологии открыли абсолютно новый эху в развитии национальных экономик отдельных стран и мировой экономики в целом. Успехи, достигнутые в этой области, широко освещаются и дискутируются средствами массовой информации. К сожалению, далеко не всегда они отражают истинное положение дел, и поэтому неспециалистам зачастую трудно понять до конца, что же происходит в научных лабораториях, за что в последние годы так часто присуждаются Нобелевские премии, как чисто фундаментальные исследования уже реально находят приложение в практике и не опасно ли все это для нас и для окружающей нас биосферы.

Содержание

Введение...................................................................................................................3
1. Основы биотехнологии. Задачи биотехнологии. Структура современной биотехнологии …………………............................................................................4
2. Клеточная инженерия: достижения и перспектив…………………………...7
3. Генная инженерия: достижения и перспективы …………………………….9
4. Генетические основы высоких технологий…………………………………11
5. Литература………………………………………

Прикрепленные файлы: 1 файл

Реферат Биотехнология.doc

— 125.00 Кб (Скачать документ)

Экстенсивные высокие биотехнологии характеризуются относительно невысокой квалификацией обслуживающего персонала, относительно низкими затратами сырьевых и энергетических ресурсов. К технологиям подобного типа относится большинство микробиологических производств, технологических процессов по подготовке и переработке промышленного сырья, а также часть производства продукции на основе тканево-клеточных культур. В настоящее время эти технологии частично интенсифицируются за счет компьютеризации производства.

Интенсивные высокие биотехнологии (в противоположность экстенсивным) реализуются с привлечением специалистов высочайшей квалификации, с использованием уникального оборудования и самых современных материалов. Эти биотехнологии используются в медицине, а также для создания организмов с заранее заданными свойствами. Нужно отметить, что интенсификация высоких технологий, в отличие от интенсификации технологий низкого уровня, заключается не просто в повышении их трудоемкости и повышении уровня ресурсо- и энергозатраты, а в повышении качества ресурсного и информационного обеспечения.

 

Технологии разных уровней неразрывно связаны между собой. С одной  стороны, высокие технологии базируются на технологиях низкого уровня, для  их осуществления требуется определенный ресурсный, энергетический и информационный фундамент. С другой стороны, достижения высоких технологии используются на низших уровнях биотехнологических производств.

Высокие технологии представляют собой  величайшее достижение человеческого  разума. Однако они по ряду параметров они не только не превосходят технологии низкого уровня, но даже и уступают им. В частности, высокие технологии требуют все больших и больших вложений ресурсов всех видов. Кроме того, они не решают проблемы получения экологически чистой продукции, а само биотехнологическое производство представляет собой угрозу для человека и окружающей его природной среды.

Преодоление перечисленных проблем  возможно только при решении комплекса  задач. Поэтому современные биотехнологии  необходимо развивать по следующим направлениям.

1. Повышение безопасности для человека и окружающей его среды. Для повышения безопасности биотехнологического производства необходимо создание таких рабочих систем, которые не могут функционировать в неконтролируемых условиях. Например, штаммы кишечной палочки, используемые в биотехнологии, лишены надмембранных структур (оболочек); такие бактерии просто не могут существовать вне лабораторий или вне специальных технологических установок. Перспективным направлением является создание и внедрение в производство ауксотрофных форм, не способных синтезировать некоторые необходимые вещества (по сравнению с нормальными, прототрофными формами). Повышенной безопасностью обладают и многокомпонентные системы из двух и более систем, каждая из которых не способна к самостоятельному существованию

2. Снижение доли отходов, внедрение ресурсосберегающих технологий. Отходами производства называются его побочные продукты, которые не могут использоваться человеком или другими компонентами биосферы (а также побочные продукты, использование которых нерентабельно или сопряжено с каким-то риском). Отходы производства могут накапливаться в пределах производственных помещений (территорий), но могут и выбрасываться в окружающую среду. Вообще-то, абсолютно безотходных технологий не существует (как не существует вечного двигателя). Однако необходимо стремиться к изменению соотношения полезный продукт/отходы в пользу полезного продукта. Этого можно достичь различными способами. Во-первых, отходам можно найти полезное применение. Во-вторых, отходы можно направить на вторичную переработку, создав замкнутый технологический цикл. И, наконец, можно изменить саму рабочую систему так, чтобы уменьшить долю отходов.

3. Снижение энергетических затрат на производство продукта, т.е. внедрение энергосберегающих технологий. Принципиальное решение этой проблемы возможно, в первую очередь, за счет использования возобновляемых источников энергии. Например, годовое потребление энергии ископаемого топлива соизмеримо с объемом чистой валовой продукции всех фотосинтезирующих организмов на Земле. Для трансформации солнечной энергии в формы, доступные для современных силовых установок, создаются энергетические плантации быстрорастущих растений. В экономически развитых странах для получения посадочного материала используются методы клеточной инженерии. Полученная биомасса используется для получения целлюлозы, биотоплива, а также биогумуса. Всесторонние выгоды подобных технологий очевидны. Использование методов клеточной инженерии для постоянного обновления посадочного материала обеспечивает получение в кратчайшие сроки большого количества растений, свободных от вирусов и микоплазм; при этом отпадает необходимость создания маточных плантаций. Снижается нагрузка на естественные насаждения древесных растений (которые в значительной мере вырубаются для получения целлюлозы и топлива), уменьшаются потребности в ископаемом топливе (которое, в общем-то, является экологически грязным, поскольку при его сжигании образуются недоокисленные вещества). В ходе фотосинтеза солнечная энергия непосредственно преобразуется в энергию биотоплива – без всякого рода технических преобразователей энергии, для изготовления которых требуются полупроводниковые материалы и цветные металлы. Кроме того, при фотосинтезе связываются углекислый газ и водяные пары, то есть снижается содержание в атмосфере важнейших факторов парникового эффекта. При уборке урожая часть углерода вместе с корнями (а также лиственным опадом, элементами ризосферы и органическим веществом, преобразованным фитофагами) остается в почве – этот углерод на длительное время изымается из глобального цикла. При сжигании биотоплива  образуются углекислый газ и водяные пары, которые поступают в атмосферу, но вновь связываются растениями на энергетических плантациях.

4. Снижение доз минеральных удобрений и доз химических средств защиты растений. Минеральные удобрения и ядохимикаты не только ухудшают качество сельскохозяйственной продукции, но и наносят колоссальный ущерб природным экосистемам. Преодолеть негативные последствия химизации сельскохозяйственного производства можно различными способами. В первую очередь, необходимо отказаться от монокультур – использования ограниченного набора биотипов (сортов, пород, штаммов). Недостатки монокультуры были выявлены еще в конце XIX столетия; они очевидны. Во-первых, в монокультуре возрастают конкурентные отношения между выращиваемыми организмами; в то же время, монокультура оказывает лишь одностороннее воздействие на конкурирующие организмы (сорняки). Во-вторых, происходит избирательный вынос элементов минерального питания, что ведет к деградации почв. И, наконец, монокультура неустойчива к патогенам и вредителям. Поэтому монокультуры в течение XX века поддерживались за счет исключительно высокой интенсивности производства. Разумеется, использование монокультур интенсивных сортов (пород, штаммов) упрощает разработку технологии производства продукции. Например, с помощью высоких технологий созданы сорта растений, устойчивые к определенному пестициду, который при возделывании именно этих сортов можно применять в высоких дозах. Однако в этом случае уже нет смысла говорить о безопасности такой рабочей системы для человека и окружающей его среды. Кроме того, рано или поздно появятся расы патогенов (вредителей), устойчивые к данному пестициду. Поэтому неизбежен планомерный переход от монокультуры к многокомпонентным (поликлональным) композициям, включающим разные биотипы культивируемых организмов, которые иначе называют культиварами (от англ. cultivated varieties – культивируемые разновидности). Многокомпонентные композиции должны включать культивары с разным ритмом развития, с различным отношением к динамике физико-химических факторов среды, к конкурентам, патогенам и вредителям. В генетически гетерогенных системах возникают компенсаторные взаимодействия особей с различными генотипами. В первую очередь, это снижает уровень внутривидовой конкуренции и автоматически увеличивает давление культивируемых организмов на конкурирующие организмы других видов (сорняки). По отношению к патогенам и вредителям такая гетерогенная экосистема характеризуется коллективным групповым иммунитетом, который определяется взаимодействием множества структурных и функциональных особенностей отдельных биотипов.

Таким образом, гетерогенные биологические  системы обеспечивают возможность непрерывного и неистощительного природопользования с минимальными затратами минеральных удобрений и химических средств защиты растений. Разумеется, создание многокомпонентных композиций предполагает дальнейшее развитие высоких технологий, комплексное экспресс-тестирование полученных рабочих систем, немедленное их внедрение в сельскохозяйственное производства и в другие разделы биотехнологии.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. ЛИТЕРАТУРА

 

Основная

 

1. Афонин Алексей Алексеевич 

Доктор с.-х. наук, профессор кафедры зоологии и анатомии Брянского государственного университета

Зав. лабораторией популяционной цитогенетики НИИ ФиПИ БГУ 

главная страница сайта ОБЩАЯ И  ТЕОРЕТИЧЕСКАЯ БИОЛОГИЯ http://afonin-59-bio.narod/ru

e-mail: afonin.salix@gmail.com

 

Дополнительная

1. Глик Б., Пастернак Дж. «Молекулярная биотехнология», Мир, М., 2002.

2. Уолкер Ш. «Биотехнология без тайн» Эксмо, М., 2008.




Информация о работе Современная биотехнология: достижения, перспективы