Современная биотехнология: достижения, перспективы

Автор работы: Пользователь скрыл имя, 28 Октября 2013 в 18:51, реферат

Краткое описание

Революционизирующим этапом в развитии биотехнологии стало использование генных и клеточных биотехнологий, которые бурно развивались в последние десятилетия и уже существенно повлияли на разные аспекты жизни человека: здоровье, медицину, питание, демографию, экологию. Эти технологии открыли абсолютно новый эху в развитии национальных экономик отдельных стран и мировой экономики в целом. Успехи, достигнутые в этой области, широко освещаются и дискутируются средствами массовой информации. К сожалению, далеко не всегда они отражают истинное положение дел, и поэтому неспециалистам зачастую трудно понять до конца, что же происходит в научных лабораториях, за что в последние годы так часто присуждаются Нобелевские премии, как чисто фундаментальные исследования уже реально находят приложение в практике и не опасно ли все это для нас и для окружающей нас биосферы.

Содержание

Введение...................................................................................................................3
1. Основы биотехнологии. Задачи биотехнологии. Структура современной биотехнологии …………………............................................................................4
2. Клеточная инженерия: достижения и перспектив…………………………...7
3. Генная инженерия: достижения и перспективы …………………………….9
4. Генетические основы высоких технологий…………………………………11
5. Литература………………………………………

Прикрепленные файлы: 1 файл

Реферат Биотехнология.doc

— 125.00 Кб (Скачать документ)

 

Значение клеточной  инженерии

1. Применение клеточных культур  позволяет преодолеть многие проблемы биоэтики (биологической этики), связанные с умерщвлением животных. Поэтому культуры клеток широко используются в научных исследованиях.

2. В культуре можно выращивать  строго определенные клетки в  неограниченном количестве. Поэтому  культуры клеток и тканей, выделенные из природного материала, широко используются при промышленном производстве биологически активных веществ. В частности, на клеточно-тканевом уровне выращиваются женьшень, родиола розовая и другие лекарственные растения.

3. Из апикальных меристем путем микроклонирования получают посадочный материал ценных сортов растений, свободный от многих болезней (например, от вирусов и микоплазм), в частности, безвирусный посадочный материал цветочных и плодово-ягодных культур. На питательной среде размножают и каллусные ткани, которые в дальнейшем дифференцируются  с образованием целостных растений.

4. Решаются проблемы получения  отдаленных гибридов растений. Во-первых, путем соматической гибридизации  можно скрещивать растения, которые  не скрещиваются обычным путем. Во-вторых, полученные отдаленные гибриды можно воспроизводить, минуя семенное размножение и мейотический фильтр.

5. На культурах клеток получают  вакцины, например, против кори, полиомиелита. В настоящее время решается  вопрос крупномасштабного производства моноклональных антител на основе гибридомных культур.

6. Сохраняя культуры клеток, можно  сохранять генотипы отдельных  организмов и создавать банки  генофондов отдельных сортов  и даже целых видов, например, в виде мериклонов (культур меристем).

7. Манипуляции с отдельными клетками  и их компонентами используются  для клонирования животных. Например, ядра из клеток кишечного эпителия  головастика внедряются в энуклеированные  яйцеклетки лягушки. В результате  из таких яйцеклеток развиваются особи с генетически идентичными ядрами.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Генная инженерия:  достижения и перспективы. Возможности  коррекции генотипа при генетических  заболеваниях 

 

Генная инженерия представляет собой совокупность методов, позволяющих создавать синтетические системы на молекулярно- биологическом уровне.

Генная инженерия  дает возможность конструировать функционально  активные структуры в форме рекомбинантных ДНК вне биологических систем (in vitro), а затем вводить их в клетки.

 

Генная инженерия возникла в 1972 г., когда в лаборатории П. Берга (Станфордский ун-т, США) была получена первая рекомбинантная (гибридная) ДНК (рекДНК), в которой были соединены фрагменты ДНК фага лямбда и кишечной палочки с кольцевой ДНК обезьяньего вируса SV40. С конца 1980-х гг. генетически модифицированные растения начинают использоваться в сельском хозяйстве.

 

Методы генной инженерии основаны на получении  фрагментов исходной ДНК и их модификации.

Для получения  исходных фрагментов ДНК разных организмов используется несколько способов:

– Получение  фрагментов ДНК из природного материала  путем разрезания исходной ДНК с  помощью специфических нуклеаз (рестриктаз).

– Прямой химический синтез ДНК, например, для создания зондов (см. ниже).

– Синтез комплементарной ДНК (кДНК) на матрице мРНК с использованием фермента обратной транскриптазы (ревертазы).

 

Определение нуклеотидного  состава фрагментов ДНК производится с помощью радиоактивных зондов – молекул ДНК с заранее известной структурой, в состав которых входят радиоактивные изотопы фосфора или водорода. Если структура выделенного фрагмента хотя бы частично комплементарна структуре зонда, то происходит ДНК–ДНК–гибридизация, и на микрофотографии препарата появляется засветка от радиоактивного изотопа.

Выделенные участки ДНК встраивают в векторы переноса ДНК. Векторы  – это небольшие молекулы ДНК, способные проникать в другие клетки и реплицироваться в них.

В состав вектора  входит не менее трех групп генов:

1. Гены, которые  интересует экспериментатора.

2. Гены, отвечающие за репликацию  вектора. 

3. Гены-маркеры, по деятельности  которых можно судить об успешности  трансформации (например, гены устойчивости  к антибиотикам или гены, отвечающие  за синтез белков, светящихся  в ультрафиолетовом свете).

Для внедрения векторов в прокариотические или эукариотические клетки используют различные способы: 

1. Биотрансформация. Используются векторы, способные сами проникать в клетки. Частным случаем биотрансформации является агробактериальная трансформация.

2. Микроинъекции. Используются, если клетки, подлежащие трансформации, достаточно крупные (например, икринки, пыльцевые трубки).

3. Биобаллистика (биолистика). Векторы «вбивают» в клетки с помощью специальных «пушек».

В качестве векторов часто используют плазмиды (кольцевые молекулы ДНК прокариотических клеток), а также ДНК вирусов. У эукариот в качестве векторов используют мобильные генетические элементы – участки хромосом, способные образовывать множество копий и встраиваться в другие хромосомы. В составе одного вектора можно комбинировать различные фрагменты ДНК (различные гены). Вновь образованные фрагменты ДНК называют рекомбинантными.

Векторы переноса ДНК вместе с внедренными  фрагментами ДНК различными способами  вводят в прокариотические или эукариотические  клетки и получают трансгенные клетки. В ходе размножения трансгенных клеток происходит клонирование требуемых фрагментов ДНК, в частности, отдельных генов. Клонированные гены эукариот подвергают различным модификациям (например, добавляют перед ними сильные промоторы) и внедряют в клетки-продуценты. Основная проблема состоит в том, чтобы чужеродные гены экспрессировались постоянно, то есть должен происходить синтез необходимых веществ без ущерба для клетки–хозяина.

 

Практические достижения современной  генной инженерии заключаются в следующем:

– Созданы банки генов, или клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других).

– На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов.

– Созданы трансгенные высшие организмы (некоторые рыбы и млекопитающие, многие растения) в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически модифицированные растения (ГМР), устойчивые к высоких дозам определенных гербицидов, а также Bt-модифицированные растения, устойчивые к вредителям.

– Разработаны методы клонирования строго определенных участков ДНК, например, метод полимеразной цепной реакции (ПЦР). ПЦР-технологии применяются для  идентификации определенных нуклеотидных последовательностей, что используется при ранней диагностике некоторых заболеваний, например, для выявления носителей ВИЧ-инфекции.

Возможности генной инженерии практически  безграничны. В настоящее время  интенсивно изучается возможность коррекции генома человека (и других организмов) при генетических и негенетических заболеваниях.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Генетические основы высоких технологий. Преодоление недостатков монокультуры, создание поликлональных композиций. Получение экологически чистой продукции 

 

Современная биотехнология развивается  настолько динамично, что невозможно разработать унифицированную классификацию  ее компонентов. Лишь в самом грубом приближении (по аналогии с промышленными  небиологическими технологиями) можно выделить следующие типы технологий: технологии низкого и высокого уровня, экстенсивные и интенсивные технологии, а также безотходные, безопасные, ресурсо- и энергосберегающие, трудоемкие, наукоемкие, прорывные. Современные биотехнологии различных направлений и различных уровней неразрывно связаны между собой в единую научно-производственную систему.

 

Технологии низкого  уровня – это технологии традиционные, в известной мере, устаревшие. Они характеризуются низкой наукоемкостью, т.е. базируются на использовании рабочих систем, полученных методами традиционной селекции. Для реализации таких технологий не требуется специального оборудования и специальной подготовки материала. Такие технологии широко используются в рамках обычного сельскохозяйственного производства, в частности, в растениеводстве (тогда рабочей системой можно считать агроэкосистему, например, обрабатываемое картофельное поле). К биотехнологиям низкого уровня относятся технологии биологической очистки сточных вод, получения биотоплива, некоторые виды микробиологического синтеза.

Технологии низкого уровня с  минимальными затратами материальных ресурсов, энергии и человеческого  труда называются экстенсивными. Примером таких технологий служит повышение плодородия почв путем вывоза на поля навоза, торфа, путем запашки пожнивных остатков и/или сидератов (специально выращенных бобовых растений). Эффективность подобных технологий невелика: при их использовании продуктивность агроэкосистем мало отличается от продуктивности природных экосистем. Низкая эффективность экстенсивных технологий низкого уровня компенсируется расширением площади сельскохозяйственных угодий: вырубаются леса (при этом древесина используется на топливо, для производства бумаги), распахиваются степи. Вырубка лесов и распашка степей неизбежно сопровождаются эрозией почв, оскудением водных ресурсов. Подобные технологии показали свою неэффективность уже в первой половине XX столетия.

Более эффективными являются интенсивные технологии. Их эффективность достигается, в первую очередь, путем внедрения новых интенсивных сортов растений (в животноводстве и микробиологическом синтезе – интенсивных пород животных и штаммов микроорганизмов). Интенсивность сортов (пород, штаммов) определяется их повышенной продуктивностью при увеличении затрат человеческого труда, при увеличении затрат сырьевых и энергетических ресурсов путем все более широкого использования средств механизации, автоматизации и химизации. Примером таких технологий служит повышение плодородия почв с помощью предварительно подготовленных компостов, путем совместного внесения бактериальных и минеральных удобрений. Широчайшее внедрение подобных технологий характерно для второй половины XX столетия. Например, в Великобритании в период с 1950 по 1980 гг. удалось увеличить урожайность зерновых в 2 раза (50% прироста получено за счет внедрения новых интенсивных сортов, а 50% – за счет увеличения затрат сырьевых и энергетических ресурсов). В настоящее время в экономически развитых странах на производство 1 пищевой калории затрачивается 5…7 калорий ископаемого топлива. Однако в результате применения интенсивных технологий низкого уровня многократно усиливается локальная нагрузка на природные экосистемы, происходит механическая эрозия почв, возрастает их загрязненность минеральными удобрениями и средствами защиты растений. Возрастает и глобальная нагрузка на биосферу, в первую очередь, за счет выбросов углекислого газа: количество СО2, образовавшегося при сжигании ископаемого топлива, в несколько раз больше, чем количество СО2, ассимилированного в ходе фотосинтеза в агроэкосистемах. Одним из самых существенных недостатков интенсивных технологий является резкое снижение качества продукции (такую продукцию часто называют «экологически грязной»).

 

Уже в 1970-е гг. стало ясно, что  использование технологий низкого уровня – это тупиковый путь. Выходом из этого тупика стало использование прорывных технологий. Прорывные технологии базируются на самых современных достижениях науки и техники. В качестве прорывных эти технологии они существуют недолго: то, что вчера казалось невероятным, непривычным, фантастичным – сегодня становится обыденным, рутинным. В свое время прорывными технологиями стали технологии микробиологического синтеза (в частности, получения антибиотиков), технологии клеточной инженерии (в частности, гибридизация соматических клеток и клонирование организмов), технологии генной инженерии (в частности, получение кДНК, получение векторов переноса ДНК и создание трансгенных организмов).

Прорывные, принципиально новые  технологии могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Внедрение прорывных технологий, как правило, сопровождается появлением новых типов продуктов и новых типов отходов. В принципе, любой новый пищевой или промышленный продукт должен проходить всестороннюю проверку на аллергенность, канцерогенность и мутагенность, на совместимость с другими продуктами, на безопасность для окружающей среды и т.д. Однако прорывные технологии, по своему определению делают такую проверку невозможной. Поэтому прорывные технологии вызывают у населения вполне понятное недоверие, как, например, в случае с внедрением в наш рацион генетически модифицированных источников (ГМИ).

 

В дальнейшем на основе прорывных  технологий создаются биотехнологии высокого уровня (или просто высокие биотехнологии). В противоположность технологиям низкого уровня, высокие биотехнологии характеризуются высокой наукоемкостью, т.е. использованием рабочих систем, полученных с использованием самых современных методов экологии, генетики, микробиологии, цитологии, молекулярной биологии. Материалы, применяемые в высоких биотехнологиях, часто нуждаются в специальной подготовке. Для реализации таких технологий требуется специальное технологическое оборудование, обслуживаемое квалифицированными специалистами. Из-за нехватки таких специалистов расширение высокотехнологичного производства сопровождается его автоматизацией и компьютеризацией. Такие технологии используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий.

Высокие биотехнологии также делятся  на экстенсивные и интенсивные.

Информация о работе Современная биотехнология: достижения, перспективы