Шпаргалка по "Биологии"

Автор работы: Пользователь скрыл имя, 15 Октября 2013 в 01:40, шпаргалка

Краткое описание

Работа содержит ответы на 94 вопроса по дисциплине "Биология".

Прикрепленные файлы: 1 файл

BIOLOGIYa_EKZAMEN.doc

— 381.00 Кб (Скачать документ)

 Вакуоли растительных клеток.

Одномембранные структуры. Мембрана центральной вакуоли носит название тонопласта. Полость вакуоли заполнена клеточным соком, в состав которого входят различные неорганические соли, сахара, органические кислоты и их соли и другие низкомолекулярные соединения, а также некоторые высокомолекулярные вещества (например, белки).

Функции вакуолей:

  1. Поддержание тургорного давления;
  2. Накопление отходов жизнедеятельности и некоторых вторичных продуктов  метаболизма;
  3. Накопление пигментов и родственных им соединений;
  4. Накопление запасных веществ, таких как сахара и белки;
  5. В вакуолях растений иногда содержатся гидролитические ферменты. В этом случае, вакуоли действуют как лизосомы.

 Клеточная стенка.

Встречается у прокариотических клеток, клеток растений и грибов. Это плотная  многослойная структура. Клеточная стенка является продуктом жизнедеятельности клетки. 

Функции клеточной стенки:

  1. Обеспечение механической прочности клеток;
  2. Придание клеткам определенной формы;
  3. Передвижение воды и минеральных солей (у растительных клеток).

 Рибосомы.

Немембранные органеллы клетки. Состоят из двух субединиц – большой  и малой. Кроме ЭПР и гиалоплазмы  обнаруживаются в митохондриях и  пластидах.

Функция рибосом: являются местом синтеза белка в клетке.

Микротрубочки.

Это цилиндрические неразветвленные органеллы, диаметром приблизительно 24 нм. Построены из спирально упакованных глобулярных субъединиц белка тубулина.

Функции:

Микротрубочки входят в состав центриолей, базальных телец, ресничек, жгутиков. Микротрубочки участвуют в перемещении  других клеточных органелл, например пузырьков Гольджи. Кроме того, микротрубочки образуют опорную систему клетки – цитоскелет.

Микрофиламентами называются очень тонкие белковые нити диаметром 5 –7 нм. Эти нити состоят из белка актина и образуют цитоскелет. По-видимому, микрофиламенты участвуют также в экзо- и эндоцитозе. В клетке обнаруживаются и нити миозина (их количество значительно меньше). Взаимодействие актина и миозина лежит в основе сокращения мышц.

Промежуточные филаменты имеют толщину 8-10 нм, В состав промежуточных филаментов входит несколько разных, но родственных белков. Выполняют только опорную функцию.

 Клеточный центр.

Немембранная органелла клетки. Состоит из двух центриолей. Основу строения центриолей составляют расположенные  по окружности девять триплетов микротрубочек, образующие таким образом полый цилиндр. Обычно центриоли располагаются под прямым углом друг к другу.

В делящихся клетках центриоли  принимают участие в формировании веретена деления и располагаются  на его полюсах. В не делящихся клетках центриоли часто определяют полярность клеток эпителия и располагаются вблизи аппарата Гольджи.

Ядро.

Клеточное ядро состоит из ядерной  оболочки (кариолеммы),  Ядро -  самая  крупная клеточная структура, заключенная  в оболочку из двух мембран –  наружной и внутренней, разделенных полостью – перинуклеарной цистерной. На наружной ядерной мембране располагается большое количество рибосом.  Она непосредственно переходит в мембраны ЭПР. Перинуклеарная цистерна сообщается с цистернами гранулярного ЭПР.

Внутренняя мембрана ядерной оболочки гладкая. Она связана с фиброзным слоем – ядерной ламиной. Ядерная ламина состоит из сети промежуточных филаментов. Ядерная ламина поддерживает форму ядра, кроме того, она заякоривает хроматин на ядерной оболочке, способствуя его укладке.

Оболочка ядра пронизана порами. Поры образуются за счет слияния двух ядерных мембран в виде округлых сквозных отверстий. Отверстие в  ядерной оболочке заполнено сложно организованными глобулярными и  фибриллярными структурами.  

Основным компонентом интерфазного ядра является хроматин, в состав которого входит ДНК в комплексе с белком. В делящихся клетках хроматиновые нити спирализуются и образуют хромосомы.

Внутри ядра располагаются  ядрышки. Ядрышко  – производное хромосомы, один из ее локусов. В состав ядрышка также входят рРНК и белки.

Функции:

  1. Хранение генетической информации;
  2. Реализация генетической информации.

 Включения.

временные компоненты цитоплазмы, продукты ее жизнедеятельности.

Различают секреторные, экскреторные и трофические  включения.

Секреторные представляют собой пузырьки, окруженные мембраной, и содержащие  биологически активные вещества, подлежащие выделению из клетки во внешнюю среду .

Экскреторные включения содержат вредные продукты метаболизма, которые должны быть удалены из цитоплазмы клетки.

Трофические включения накапливают запасные вещества (липиды, углеводы, белки).

Цитоплазма – это внеядерная часть клетки, включающая гомогенную гиалоплазму и многочисленные цитоплазматические структуры(органеллы и включения). Химический состав цитоплазмы: основу составляет вода, различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение. Если движение цитоплазмы прекращается, клетка погибает.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Цитоскелет – это сложная система неразветвленных белковых нитей. Расположена в цитозоле и постоянно перестраивается. Значение: ни одно клеточное деление не произойдет без участия цитоскелета.

 

11: химический состав клетки (макро  и микроэлементы, неорганические  вещества, их роль в жизнедейтельности  клетки).

 Выделяют 3 группы элементов:

Макроэлементы: сюда относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %.

Углерод — входит в состав всех органических веществ; скелет из атомов углерода составляет их основу.

Кислород — входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды.

Водород — входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды.

Азот — входит в состав белков, нуклеиновых кислот и их мономеров — аминокислот и нуклеотидов.

Сера — входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат-иона в цитоплазме клеток и межклеточных жидкостях.

Фосфор — входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат-ионов).

Магний — кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.

Кальций — участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы. Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.

Натрий — участвует в поддержании мембранного потенциала, генерации нервного импульса, процессы осморегуляции (в том числе работу почек у человека) и создании буферной системы крови.

Калий — участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах.

Хлор — поддерживает электронейтральность клетки.

Микроэлементы: К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод, кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром, цинк

Цинк — входит в состав ферментов, участвующих в спиртовом брожении, в состав инсулина

Медь — входит в состав окислительных ферментов

Селен - участвует в регуляторных процессах организма.

Ультрамикроэлементы: составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

 

12: Органические вещества клетки. Понятие о биополимерах. Белки  (структура и функции).

Белки.Больше всего в клетке, после воды, содержится белков – 10-20%. Белки – нерегулярные полимеры, мономерами которых являются АК. В составе белковых полимеров обнаружено 20 различных аминокислот, каждая их которых имеет особое строение, свойство и название.  Через общую группировку происходит сцепление АК при образовании белкового полимера. Между соединившимися АК возникает связь –HN-CO-, называемая пептидной связью, а образовавшееся соединение – пептидом.Белки различаются по АК составу и по числу АК звеньев, и по их порядку расположения в цепи.

Строение  молекулы белка. Выделяют несколько  уровней организации белковой молекулы:

-первичная структура белка представляющая собой полипептидную цепь, состоящую из цепи аминокислотных звеньев, связанных между собой пептидными связями.

-вторичная  структура белка, где белковая  нить закручивается в виде  спирали. Между пептидными связями,  расположенными на соседних витках, образуются водородные связи (между NH- и CO-группами). Водородные связи слабее ковалентных, но повторяясь многократно, они дают прочное сцепление. Такая структура является довольно устойчивой.

-третичная  структура белка поддерживается еще более слабыми связями, чем водородные – гидрофобными. Несмотря на их слабость, в сумме они дают значительную энергию взаимодействия.

-четвертичная  структура белка образуется в  результате соединения нескольких  белковых макромолекул друг с  другом, которые и являются мономерами макромолекулы белка. Крепление четвертичной структуры обусловлена наличием слабых связей и –S-S- связи.

Роль белков в клетке. Прежде всего белки – строительный материал. Они участвуют в образовании оболочки, органоидов и мембран клетки. У высших животных из белков построены кровеносные сосуды, сухожилия, волосы и т.д.

Каталитическая роль белков. Скорость химических реакций зависит от свойств реагирующих веществ и от их концентрации. Чем вещества активнее, чем концентрация их больше, тем скорость реакции выше.

двигательная функция белков. Все виды движений  выполняют особые сократительные белки.

транспортная. Белок крови гемоглобин присоединяя к себе кислород, разносит его по всему организму.

Они связывают  и обезвреживают чужеродные тела. В этом случае белки выполняют защитную роль.

белки как источника энергии. Белки распадаются в клетке до АК. Часть их расходуется на синтез белков, а часть подвергается глубокому расщеплению, в ходе которого освобождается энергия. При полном распаде 1 г белка освобождается 17,6 кДж (4,2 ккал).

Углеводы. – органические вещества, в состав которых входят углерод, кислород и водород. Все углеводы разделяются на две группы: моносахариды и полисахариды. Несколько молекул моносахаридов, соединяясь между собой с выделением воды, образуют молекулы полисахарида. Полисахариды – полимеры, в которых роль мономеров играют моносахариды.

Моносахариды. Они состоят из одной  молекулы и представляют собой бесцветные, твердые кристаллические вещества, сладкие на вкус.

Полисахариды. Из двух моносахаров  образуются дисахариды, из трех – трисахариды, из многих – полисахариды.

Функции углеводов. Энергетическая функция

Структурная функция.

Запасание питательных веществ. В клетках углеводы накапливаются в виде крахмала у растений и гликогена у животных и грибов. Эти вещества представляют собой запасную форму углеводов и расходуются по мере возникновения потребности в энергии.

Защитная функция. Вязкие секреты (слизи), выделяемые различными железами предохраняются стенки полых органов (пищевода, кишечника, желудка, бронхов) от механических повреждений, проникновения вредных бактерий и вирусов.

Углеводы входят в состав носителей генетической информации – нуклеиновых кислот.

Липиды. Липиды – органические соединения с различной структурой, но общими свойствами. Они нерастворимы в воде, но хорошо растворимы в органических растворителях. Содержание жира в клетках составляет от 5-15% от сухой массы.

Функции липидов.– энергетическая функция. Жиры  способны расщепляться в клетке до простых продуктов и в ходе этого процесса освобождается 38,9 кДж на 1 г жира (9,3 ккал), что в два раза больше по сравнению с углеводами и белками.

Структурная функция. Двойной слой фосфолипидов является основой клеточной мембраны.

Функция запасания питательных веществ. Жиры являются своего рода энергетическими консервантами. Жировыми депо могут быть и капли жира внутри клетки,  и подкожная клетчатка. Жиры являются основным источником энергии для синтеза АТФ, источником метаболической воды.

Информация о работе Шпаргалка по "Биологии"