Шпаргалка по биохимии

Автор работы: Пользователь скрыл имя, 11 Марта 2014 в 22:32, шпаргалка

Краткое описание

Работа содержит ответы на вопросы для экзамена по "Биохимии".

Прикрепленные файлы: 1 файл

biokhimia_otvety.doc

— 8.64 Мб (Скачать документ)

                          NН2               АТФ                                              NН2

                                                -Н 2О

глутаминовая кислота                                          глутамин

                                          +NН3

  НООС-СН2-СН-СООН                                  Н2NОС-СН2-СН-СООН


                                                   АТФ 


                       NН2                   -Н 2О

                                                                                                     NН2

      аспарагиновая кислота                                      аспарагин

      В почках глутамин  под влиянием глутаминазы расщепляется  с образованием аммиака, идущего на нейтрализацию кислых соединений с образованием аммонийных солей. Этот процесс является одним из механизмов регуляции кислотно-щелочного равновесия в организме и сохранения важнейших катионов (Na+, K+) для поддержания осмотического давления. Глутамин – основной донор азота в организме. Амидный азот глутамина используется для синтеза пуриновых и пиримидиновых нуклеотидов, аспарагина, аминосахаров, белков, глюкозы. Также источниками образования аммиака служат процессы:

    • дезаминирования биогенных аминов;
    • распад пиримидиновых оснований (урацил, тимин, цитозин);
    • дезаминирования аминокислот;
    • дезаминирования пуриновых оснований (гуанина и аденина).

  

 

 

 

  Пути использования аммиака  в организме:

  1. Синтез аминокислот из соответствующих кетокислот:

                                        АТФ

 СН3-С-СООН  + NН3                     СН3-СН-СООН


        


         О                                                       NН2

        ПВК                                              аланин

 

  1. Синтез аммонийных  солей в почках.
  2. Синтез пуриновых и пиримидиновых нуклеотидов.
  3. Синтез мочевины – основной путь обезвреживания аммиака.

 

ГИПЕРАММОНИЕМИЯ.

Повышение содержания аммиака в крови до 6000мкмоль/л (норма-60мкмоль/л) оказывает токсическое действие на организм.

Причины:

  1. генетический дефект ферментов орнитинового цикла в печени;
  2. вторичное поражение печени в результате цирроза, гепатита и др.

Симптомы: тошнота, повторяющаяся рвота, потеря сознания, отек мозга, отставание умственного развития. Все симптомы гипераммониемии – проявление действия аммиака на ЦНС.

Для диагностики производят определение содержания аммиака в крови, метаболитов орнитинового цикла в крови и моче, активность ферментов печени.

Еще в прошлом веке русские ученые М.В. Ненцкий и С.С. Салазкин показали, что в печени происходит образование мочевины из углекислого газа и аммиака.

      Кребс и Гензеляйт  установили, что синтез мочевины  представляет собой циклический процесс, в котором ключевым соединением, замыкающим цикл, является орнитин. Кохен и Ратнер выяснили, что начальной реакцией этого цикла является синтез карбамоилфосфата.

 

                     

      В печени аммиак  связывается с СО2 с образованием карбамоилфосфата под действием карбамоилфосфатсинтетазы. Затем под действием орнитин-карбамоилтрансферазы карбамоильная группа карбамоилфосфата переносится на орнитин и образуется цитруллин. В следующей реакции аргининосукцинатсинтетаза связывает его с аспартатом и образуется аргининоянтарная кислота. Аспартат – источник второго атома азота мочевины. Далее происходит расщепление аргининоянтарной кислоты на аргинин и фумарат (идет в ЦТК). Аргинин гидролизуется под действием аргиназы на орнитин и мочевину. Образующийся орнитин взаимодействует с новой молекулой карбамоилфосфата, и цикл замыкается.

      Первые две реакции происходят в митохондриях гепатоцитов.  Затем цитруллин транспортируется в цитозоль, где и осуществляются дальнейшие превращения.

Орнитиновый цикл в печени выполняет 2 функции:

  1. превращение азота аминокислот в мочевину, которая экскретируется и предотвращает накопление токсичных   

    продуктов - аммиака;

  2. синтез аргинина и пополнение  его в организме.

      Отмечается, что у  детей первых месяцев жизни  функция печени развита недостаточно, что проявляется в том, что у    ребенка количество аммиака по сравнению с взрослым человеком увеличено в 2-2,5 раза. У новорожденных – 20-30%    общего азота падает на азот мочевины.

      Мочевина – безвредное  для организма соединение. Главным  местом ее образования в организме  является печень, где есть ферменты мочевинообразования. В головном мозге имеются все ферменты синтеза мочевины, кроме карбамоилфосфатазы, поэтому в нем мочевина не образуется. Мочевина – основной конечный продукт азотистого обмена, в составе которого из организма выделяется до 90% всего выводимого азота. В норме экскрекция мочевины – 25-30 г/сут. При повышении количества потребляемых с пищей белков увеличивается выделение мочевины.

7.9. Обмен фенилаланина  и тирозина. Врожденные нарушения  обмена аминокислот. Фенилкетонурия, алкаптонурия, альбинизм причины проявления, их профилактика. Декарбоксилирование аминокислот. Биогенные амины: гистамин, серотонин, γ-аминомасляная кислота. Образование, функции.  Инактивация биогенных аминов.

Причиной нарушений в обмене отдельных аминокислот служит полное или частичное выключение определенной ферментативной активности. При этом врожденном дефекте идет накопление большого количества промежуточных или побочных продуктов, оказывающих токсическое действие на организм, особенно на ЦНС. Вот почему, прежде всего, поражаются дети раннего возраста с последующим нарушением психической деятельности.

Фенилкетонурия – это наследственное заболевание, связанное с отсутствием фермента фенилаланингидроксилазы, в связи с чем фенилаланин превращает не в тирозин, а в фенилпировиноградную кислоту (ФПВК). При этом концентрация фенилаланина повышается в крови в 20-30 раз (в норме-1,0-2,0мг/дл), в моче – в 100-300 раз (норма – 30 мг/дл). Наиболее тяжелые проявления – нарушение умственного и физического развития, судорожный синдром, нарушение пигментации. Эти проявления связаны с токсическим действием на клетки мозга высоких концентраций фенилаланина. При отсутствии лечения больные не доживают до 30 лет. Заболевание наследуется по аутосомно-рецессивному типу.

 

Фенилаланин       фен-ала                тирозин


                             гидроксилаза

 

    ФПВК

 

Из аминокислоты тирозина образуются: тироксин, норадреналин, адреналин, меланин и др. При отсутствии ферментов, расщепляющих тирозин, наблюдается следующая патология:

Альбинизм –  наследственное заболевание, связанное с отсутствием фермента тирозиназы. Тирозин не превращается в дезоксифенилаланин (ДОФА), следовательно, не образуется пигмент меланин. Клиническое проявление – отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь.

                                                             тирозин


 

ДОФА


                     дофамин                                         гомогентизиновая кислота



меланин       норадреналин             ацетоуксусная                       фумаровая

                                                                 кислота                              кислота


 

                     адреналин 

 

Алкаптонурия («черная моча») –  заболевание, связанное с отсутствием фермента диоксигеназы, расщепляющего гомогентизиновую кислоту. Она выводится с мочой и при соприкосновении с воздухом моча приобретает темную окраску. Клиническими проявлениями болезни также являются пигментация соединительной ткани (охроноз) и артрит.

8.9. Нуклеопротеины. Переваривание в желудочно-кишечном  тракте. Распад нуклеиновых кислот (нуклеазы).Распад пуриновых нуклеотидов. Подагра, применение аллопуринола для лечения подагры. Синдром Леша-Нихана.  Представление о биосинтезе пуриновых нуклеотидов. Инозиновая кислота как предшественник адениловой и гуаниловой кислот.

 

 Нуклеопротеины – сложные белки, состоящие из белков и нуклеиновых кислот. Существует два типа нуклеопротеинов, которые отличаются друг от друга по составу, размерам и физико-химическим свойствам: дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНП).

Нуклеопротеины пищи подвергаются перевариванию в ЖКТ, образуя ряд низкомолекулярных продуктов, всасывающихся в тонком кишечнике.

1 этап – это отщепление нуклеиновой  кислоты от белковой части  нуклеопротеина. Этот разрыв связи  между белком и простетической  группой происходит как в желудке, так и в кишечнике. В желудке этот процесс происходит под действием пепсина, в кишечнике – под действием трипсина. Затем белок в ЖКТ подвергается обычным превращениям.

Расщепление нуклеиновых кислот, содержащихся в пище, происходит в результате переваривания в тонком кишечнике под действием нуклеаз: РНК-азы и ДНК-азы. Всасывание продуктов гидролиза нуклеиновых кислот происходит в виде нуклеотидов и нуклеозидов, а также в виде азотистых оснований, пентозы и остатка фосфорной кислоты.

Аденозин и гуанозин, которые образуются при гидролизе пуриновых нуклеотидов, подвергаются ферментативному распаду с образованием конечного продукта – мочевой кислоты, которая выводится с мочой из организма.

 

      Гиперурикемия –  повышение в плазме крови концентрации  мочевой кислоты. Вследствие гиперурикемии может развиться подагра.

      Подагра – заболевание, вызванное нарушением обмена нуклеиновых кислот. В хрящах, сухожилиях, в суставных сумках, иногда в почках, коже, мышцах откладываются кристаллы мочевой кислоты и уратов. Вокруг этих отложений образуется воспаление и грануляционный вал, который окружает омертвевшую ткань, при этом образуются подагрические узлы - тофусы (в суставах пальцев рук, ног, в хрящах ушной раковины), что сопровождается деформацией и болезненностью пораженных суставов. К характерным признакам подагры относятся повторяющиеся приступы острого воспаления суставов (чаще всего мелких) – острого подагрического артрита. Обычно больные склонны к атеросклерозу и гипертонии. В их крови наблюдается большая концентрация мочевой кислоты – гиперурикемия. В течение нескольких дней перед приступом подагры увеличивается выделение воды и хлорида натрия с мочой, т.е. сдвигается водно-солевой баланс. Вследствие этого возрастает концентрация мочевой кислоты в крови и отложение ее в тканях. Как правило, подагра генетически детерминирована и носит семейный характер. Она вызвана нарушениями в работе фосфорибозилдифосфата (ФРДФ) синтетазы или гипоксантингуанин- или аденинфосфорибозилтрансфераз. К другим характерным проявлениям относят нефропатию, при которой наблюдают образование уратных камней в мочевыводящих путях.

Синдром Леша-Нихена – тяжелая форма гиперурикемии, которая наследуется как рецессивный признак, сцепленный с Х-хромосомой. Проявляется только у мальчиков. Кроме симптомов подагры наблюдаются церебральные параличи, нарушение интеллекта, попытки наносить себе раны (укусы губ, пальцев). Связана болезнь с дефектом фермента гипоксантин-гуанин-фосфорибозилтрансферазы, которая катализирует превращение гипоксантина и гуанина в гуанинимонофосфат (ГМФ), поэтому они превращаются в мочевую кислоту. В первые месяцы жизни неврологические расстройства не обнаруживаются, но на пеленках отмечают розовые пятна, вызванные присутствием в моче кристаллов мочевой кислоты. При отсутствии лечения больные погибают в возрасте до 10 лет из-за нарушения функции почек.

Основной препарат для лечения гиперурикемии – аллопуринол (структурный аналог гипоксантина).

        Биосинтез пуриновых мононуклеотидов.

Первоначальным соединением синтеза служит Д-рибозо-5-фосфат, который является продуктом пентозофосфатного цикла и на который переносится пирофосфатная группа АТФ. Образовавшийся 5-фосфорибозил-1-пирофосфат (ФРПФ) взаимодействует с глутамином, который является донором NН2-группы в результате чего образуется β-5-фосфорибозил-амин. Эта стадия становится ключевой в синтезе пуринов. Затем присоединяется  молекула глицина к свободной NН2-группе β-5-фосфорибозил-амина с образованием глицинамидрибонуклеотида. Еще через несколько стадий образуется первый пуриновый нуклеотид инозинмонофосфат (ИМФ), из которого затем синтезируются остальные нуклеозидфосфаты.

 

 

 

 

 

 

 

 

 

 

 

 

 

Схема: 

9.9. Представление о распаде и биосинтезе примидиновых нуклеотидов.  Применение антифолатов  для лечения злокачественных опухолей у детей.

 

Биосинтез пиримидиновых нуклеотидов

Первоначальными соединениями этого процесса являются карбамоилфосфат и аспарагиновая кислота. Из них через длинную цепь реакций образуется уридинмонофосфат (УМФ) и остальные пиримидиновые нуклеотиды.

 

 

Распад пиримидиновых нуклеотидов.

Начальные этапы этого процесса катализируются специфическими ферментами. Конечные продукты: СО2, NН3, мочевина, β-аланин, β-аминоизомасляная кислота. β-аланин используется для синтеза дипептидов мышц – карнозина и ансерина или выделяется с мочой.

 

10.9. Сахарный диабет. Типы, причины возникновения и основные проявления нарушения метаболизма при сахарном диабете:обмена углеводов, липидов, аминокислот. Механизмы возникновения гипергликемии, глюкозурии, кетонемии, кетонурии, гиперхолестеролемии и других нарушений при сахарном диабете. Гликозилированные белки. Их значение при возникновении ангиопатии.

Информация о работе Шпаргалка по биохимии