Физиологические основы управления движениями

Автор работы: Пользователь скрыл имя, 16 Сентября 2014 в 08:00, контрольная работа

Краткое описание

Способность двигаться – важнейшее свойство животного организма. Это доказывает тот факт, что строение и функции человеческого организма в ходе эволюции формировались в неразрывной связи с их участием в осуществлении двигательных актов. Движение лежит в основе трудовой деятельности. Ведь на заре формирования человека трудовая деятельность была прежде всего мышечной работой. Движения верхних конечностей, занимавшие все большее место в труде, содействовали постепенно тому, что человек освоил вертикальную позу и прямохождение. Без движения не было бы предпосылок для труда и, стало быть, для формирования человека.

Прикрепленные файлы: 1 файл

контрольная работа по анатомии движение.docx

— 78.38 Кб (Скачать документ)

 

 

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ


ФГБОУ ВПО «Благовещенский государственный педагогический университет»

Факультет педагогики и методики начального  образования

Кафедра специальной и дошкольной педагогики и психологии

 

 

 

КОНТРОЛЬНАЯ РАБОТА

 

на тему: «Физиологические основы управления движениями»

по дисциплине: Возрастная анатомия и физиология человека

 

 

 

 

 

Исполнитель:

студент 1 курса ОЗО

ПиМНО

 

_____________

дата

 

________________

подпись

 

К.П. Запхалова

Руководитель: Попова М.Ю.,

к. п. н., доцент кафедры специальной

и дошкольной педагогики

и психологии                     

 

_____________

дата

 

________________

подпись

 

 М.Ю. Попова


 

 

 

 

 

 

 

 

 

 

 

Благовещенск 2014

СОДЕРЖАНИЕ

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

 

Способность двигаться – важнейшее свойство животного организма. Это доказывает тот факт, что строение и функции человеческого организма в ходе эволюции формировались в неразрывной связи с их участием в осуществлении двигательных актов. Движение лежит в основе трудовой деятельности. Ведь на заре формирования человека трудовая деятельность была прежде всего мышечной работой. Движения верхних конечностей, занимавшие все большее место в труде, содействовали постепенно тому, что человек освоил вертикальную позу и прямохождение. Без движения не было бы предпосылок для труда и, стало быть, для формирования человека. Так же, движение — это необходимый участок психической деятельности человека. И.М. Сеченов в работе «Рефлексы головного мозга» писал: «Все бесконечное разнообразие внешних проявлений мозговой деятельности сводится окончательно к одному лишь явлению — мышечному движению»1.

Все приведенные выше аргументы подтверждают актуальность изучения двигательной активности человеческого организма, что, в свою очередь, предполагает изучение физиологических основ управления движениями.

 
 

 

 

 

 

 

 

 

ОСНОВНАЯ ЧАСТЬ

1 Определение понятия «координация движений»

 

Термин «координация» происходит от латинского coordinatio — взаимоупорядочение. Под координацией движений понимают процессы согласования активности мышц тела, направленные на успешное выполнение двигательной задачи2.

Для ЦНС объектом управления является опорно-двигательный аппарат. Своеобразие скелетно-мышечной системы заключается в том, что она состоит из большого числа звеньев, подвижно соединенных в суставах, допускающих поворот одного звена относительно другого. Суставы позволяют звеньям поворачиваться относительно одной, двух или трех осей, т. е. обладать одной, двумя или тремя степенями свободы. Чтобы в трехмерном пространстве достичь любой заданной точки (в пределах длины конечности), достаточно иметь двухзвенную конечность с двумя степенями свободы в проксимальном суставе (плечо) и одной степенью свободы в дистальном (локтевой). На самом деле конечности имеют большее число звеньев и степеней свободы. Чтобы кинематическая цепь совершала нужное движение, необходимо исключить те степени свободы, которые для данного движения являются избыточными. Этого можно достичь двумя способами:

1) зафиксировать избыточные  степени свободы путем одновременной активации антагонистических групп мышц (коактивация);

2) связать движения в разных суставах определенными соотношениями, уменьшив, таким образом, число независимых переменных, с которыми должна иметь дело ЦНС. Такие устойчивые сочетания одновременных движений в нескольких суставах, направленных на достижение единой цели, получили название синергии.

Весьма своеобразны и «двигатели», используемые в живом организме. Скелетные мышцы представляют собой эластомеры с нелинейной зависимостью развиваемой силы от частоты активации. При этом развитие силы автоматически сопровождается изменениями упругости и вязкости мышцы. Кроме того, напряжение мышцы зависит от ее длины (угол в суставе) и скорости удлинения или укорочения. Сложность управления движениями в суставах при помощи мышц усугубляется еще и тем, что на каждую степень свободы, как правило, приходится больше одной пары мышц. При этом многие мышцы являются двухсуставными, т.е. действуют не на один, а на два сустава. Поэтому, например, сгибание пальцев руки невозможно без одновременной активации разгибателей кисти, препятствующих действию сгибателей пальцев в лучезапястном сочленении.

Формы участия мышц в осуществлении двигательных актов весьма многообразны. Анатомическая классификация мышц (например, сгибатели и разгибатели, синергисты и антагонисты) не всегда соответствуют их функциональной роли в движениях. Так, некоторые двухсуставные мышцы в одном суставе осуществляют сгибание, а в другом — разгибание. Антагонист может возбуждаться одновременно с агонистом для обеспечения точности движения, и его участие помогает выполнять двигательную задачу. В связи с этим, учитывая функциональный аспект координации, в каждом конкретном двигательном акте целесообразно выделить основную мышцу (основной двигатель), вспомогательные мышцы (синергисты), антагонисты и стабилизаторы (мышцы, фиксирующие, не участвующие в движении суставы). Роль мышц не ограничивается генерацией силы. Антагонисты и стабилизаторы часто функционируют в режиме растяжения под нагрузкой, который используется для плавного торможения движений, амортизации толчков.

На конечный результат движения влияют не только силы, развиваемые мышцами, но и силы немышечного происхождения. К ним относятся силы инерции, создаваемые массами звеньев тела, вовлекаемых в движение, а также силы реакции, возникающие в кинематических цепях при смешении любого из звеньев. Движение смещает различные звенья тела относительно друг друга и меняет конфигурацию тела, а, следовательно, по ходу движения изменяются моменты упомянутых сил. Вследствие изменения суставных углов меняются и моменты мышечных сил. На ход движения влияет и масса звеньев тела; моменты сил тоже изменяются в процессе движения из-за изменения ориентации звеньев относительно вектора силы тяжести. В практической деятельности человек вступает во взаимодействие с предметами внешнего мира — различными инструментами, перемещаемыми грузами и др., и ему приходится преодолевать силы тяжести, упругости, трения, инерции, возникающие в процессе этого взаимодействия. Необходимо также нейтрализовать действие непредвиденных помех движению, которые могут возникать во внешней среде, и оперативно исправлять допущенные в ходе реализации движения ошибки. Немышечные силы вмешиваются в процесс движения и делают необходимым непрерывное согласование с ними деятельности мышечного аппарата.

В связи с перечисленными особенностями скелетно-мышечной системы и условиями ее взаимодействия с внешним миром, управление движениями оказывается немыслимым без решения задачи согласования активности большого числа мышц.

Характер этого согласования зависит от двигательной задачи. Так, если нужно взять стакан с водой, то для формирования такого движения ЦНС должна располагать информацией о положении стакана относительно тела и о исходном положении руки. Однако, поскольку мы хотим, чтобы это движение было успешным, кисть заранее раскрылась на величину, соответствующую размеру стакана, чтобы сгибатели пальцев сжимали стакан с силой, достаточной для предотвращения проскальзывания, чтобы приложенная сила была достаточной для плавного подъема, но не вызывала резкого отрыва, чтобы ориентация стакана в кисти после захвата все время была вертикальной, т.е. чтобы реализация движения соответствовала двигательной задаче, то необходимы не только данные о пространственных соотношениях, но и разные сведения о свойствах объекта манипулирования. Многие из этих сведений не могут быть получены в ходе самого движения посредством обратных связей, а должны быть заложены в программу предстоящего движения на этапе его планирования. Предполагают, что двигательная память содержит обобщенные классы двигательных программ, из числа которых в соответствии с двигательной задачей выбирается нужная. Эта программа модифицируется применительно к конкретной ситуации: однотипные движения могут выполняться быстрее или медленнее, с большей или меньшей амплитудой. Одна и та же программа может быть реализована разными наборами мышц, уровень планирования движения и уровень его исполнения не совпадают, иначе говоря, система управления движениями является многоуровневой. Действительно, произвольное пространственно ориентированное движение планируется в терминах трехмерного эвклидового пространства: вверх—вниз, вперед—назад, вправо—влево. Для выполнения этого плана необходимо перевести планируемые линейные перемещения в соответствующие угловые переменные (изменения суставных углов), определить, какие мышечные моменты необходимы для этих угловых перемещений, и, наконец, сформировать двигательные команды, которые вызовут активацию мышц, дающую необходимые значения моментов.

В планировании, преобразовании и исполнении двигательной программы участвуют различные структуры нервной системы, организованные по иерархическому принципу. Двигательная программа может быть реализована различными способами. В простейшем случае ЦНС посылает заранее сформированную последовательность команд к мышцам, не подвергающуюся во время реализации никакой коррекции. В этом случае говорят о разомкнутой системе управления. Такой способ управления используется при осуществлении быстрых, так называемых баллистических, движений. Чаше всего ход осуществления движения сравнивается с его планом на основе сигналов, поступающих от многочисленных рецепторов, и в реализуемую программу вносятся необходимые коррекции — это замкнутая система управления с обратными связями. Однако и такое управление имеет свои недостатки. Вследствие относительно малой скорости проведения сигналов, значительных задержек в центральном звене обратной связи и времени, необходимых для развития усилия мышцей после прихода активирующей посылки, коррекция движения по сигналу обратной связи может запаздывать. Поэтому во многих случаях целесообразно реагировать не на отклонение от плана движения, а на само внешнее возмущение еще до того, как оно успело вызвать это отклонение. Такое управление называют управлением по возмущению.

В осуществлении координации движений участвуют все отделы ЦНС — от спинного мозга до коры большого мозга. У человека двигательные функции достигли наивысшей сложности в результате перехода к прямостоя- нию и прямохождению (что осложнило задачу поддержания равновесия), специализации передних конечностей для совершения тонких движений, использования двигательного аппарата для коммуникации (речь, письмо). В управление движениями человека включены высшие формы деятельности мозга, связанные с сознанием, что дало основание называть соответствующие движения произвольными. Помимо первичной моторной коры (поле 4 по Бродману), в управлении движениями участвует премоторная кора (поле 6), включая дополнительную моторную кору, и кора поясной Извилины (поле 23).

На спинальном уровне протекают лишь простейшие координации. Тем не менее спинной мозг может осуществлять довольно обширные функции, вплоть до «спинального шагания» у животных (Ч. Шеррингтон). Нервные механизмы ствола мозга существенно обогащают двигательный репертуар, обеспечивая координацию правильной установки тела в пространстве за счет шейных и лабиринтных рефлексов (Р Магнус) и нормального распределения мышечного тонуса. Важная роль в координации движений принадлежит мозжечку. Такие качества движения, как плавность, точность, необходимая сила, реализуются с участием мозжечка путем регуляции временных, скоростных и пространственных характеристик движения. Полушария мозга (кора и базальные ядра) обеспечивают наиболее тонкие координации движений: двигательные реакции, приобретенные в индивидуальной жизни. Осуществление этих реакций базируется на работе рефлекторного аппарата ствола мозга и спинного мозга, функционирование которых многократно обогащается деятельностью высших отделов ЦНС.

 

2 Роль рецепторных образований  мышц, сухожилий и кожи в координации движений

 

В мышцах человека содержатся три типа специализированных рецепторов: первичные окончания веретен, вторичные окончания веретен и сухожильные рецепторы Гольджи. Эти рецепторы реагируют на механические раздражения и участвуют в координации движении, являясь источником информации о состоянии двигательного аппарата.

Мышечное веретено имеет длину в несколько миллиметров, ширину в десятые доли миллиметра, одето капсулой и расположено в толще мышцы. Внутри капсулы находится пучок интрафузальных мышечных волокон. Веретена расположены параллельно внешним по отношению к капсуле экстрафузальным волокнам, поэтому при растяжении мышцы нагрузка на веретена увеличивается, а при сокращении — уменьшается. В расслабленной мышце импульсация, идущая от веретен, невелика, но они реагируют повышением частоты разрядов на удлинение мышцы. Таким образом, веретена дают мозгу информацию о длине мышцы и ее изменениях. Импульсация, идущая от веретен, в спинном мозге возбуждает мотонейроны своей мышцы и тормозит мотонейроны мышцы-антагониста, а также возбуждает мотонейроны сгибателей и тормозит мотонейроны разгибателей.

Сухожильные рецепторы Гольджи находятся в зоне соединения мышечных волокон с сухожилием и расположены последовательно по отношению к мышечным волокнам. Они слабо реагируют на растяжение мышцы, но возбуждаются при ее сокращении, причем их импульсация пропорциональна силе сокращения. Поэтому сухожильные рецепторы информируют мозг о силе, развиваемой мышцей. Идущие от этих рецепторов волокна в спинном мозге вызывают торможение мотонейронов собственной мышцы и возбуждение мотонейронов мышцы-антагониста. Информация от мышечных рецепторов по восходящим путям спинного мозга поступает в высшие отделы ЦНС, включая кору большого мозга.

Чувствительность кожи и ощущение движения связаны с проведением в мозг сигналов от рецепторов по двум основным путям (трактам): лемнисковому и спиноталамическому, значительно различающимся по своим свойствам. Лемнисковый путь передает в мозг сигналы о прикосновении к коже, давлении на нее и движениях в суставах. Отличительная особенность этого пути — быстрая передача в мозг наиболее точной информации, дифференцированной по силе и месту воздействия.

По мере перехода на все более высокие уровни изменяются некоторые важные свойства нейронов лемнискового пути. Значительно увеличиваются рецептивные поля нейронов (в продолговатом мозге — в 2-30, а в коре большого мозга — в 15-100 раз).

Спиноталамический путь значительно отличается от лемнискового сравнительно медленной передачей афферентных сигналов, нечетко дифференцированной информацией о свойствах раздражителя и не очень четкой ее топографической локализацией; он служит для передачи температурной, всей болевой и в значительной мере тактильной чувствительности. 
Болевая чувствительность практически не представлена на корковом уровне (раздражение коры не вызывает боли), поэтому считают, что высшим центром болевой чувствительности является таламус, где 60 % нейронов в соответствующих ядрах четко реагирует на болевое раздражение.

Информация о работе Физиологические основы управления движениями