Разработка технологии базальтопластиков на основе полиэтилена и базальтовой ваты

Автор работы: Пользователь скрыл имя, 06 Апреля 2014 в 03:04, курсовая работа

Краткое описание

Для этого наша страна обладает огромными запасами горных пород габбро-базальтовой группы и разработанными технологиями переработки их в высококачественные минеральные волокна, нити, ровинги, нетканые холсты, сетки и другой ассортимент. Стоимость 1 тонны базальтовой породы в карьере составляет - 250 руб./т.
Будущее за базальтопластиками еще и потому, что углеродные волокна очень дороги и количество их ограничено, производство стеклянных волокон в Российской Федерации по разным причинам не развивается, а выпуск органических (химических) волокон не обеспечивает даже потребности текстильной промышленности.

Содержание

Введение
1. Информационный анализ состояния проблемы
1.1.Получение, свойства и области применения базальтовых волокон
1.2. Получение, свойства и области применения полиэтилена
1.3. Изготовление изделий из термопластов литьем под давлением
2. Экспериментальная часть
2.1. Объекты и методы исследования
2.2. Результаты эксперимента и их обсуждение
3. Технология производства
3.1. Описание технологического процесса
3.2. Основные параметры технологического процесса
3.3. Материальный баланс
4. Безопасность и экологичность проекта
Заключение
Список используемой литературы

Прикрепленные файлы: 1 файл

Усовершенствование технологии получения изделий из полиамида методом литья под давлением.rtf

— 7.19 Мб (Скачать документ)

Такое широкое производство ПЭ объясняется сочетанием его ценных свойств со способностью перерабатываться при температуре 120 -- 280°С всеми известными высокопроизводительными методами, применяемыми при переработке термопластов. Кроме того, полиэтилен -- один из самых дешевых полимеризационных пластиков.

Непрерывное развитие производства и расширение сфер применения полимерных материалов неизбежно сопровождается накоплением промышленных и бытовых отходов пластмасс, что приводит к созданию экономических и экологических проблем. В связи с этим переработка вторичных полимеров (ВП) с точки зре6ния экономии материальных ресурсов и решении экологических проблем приобретает все большее значение [26].

Среди вторично перерабатываемых термопластичных полимеров основные место занимают полиэтилены ПЭ высокой т низкой плотности.

Проблема вторичной переработки связана не только с необходимостью организации дополнительных производственных мощностей (дробилки, моющее оборудование, линии перегрануляции) и с дополнительными энергозатратами, но н с обеспечением вторичному сырью физико-механических свойств, максимально приближенных к свойствам исходного полимера. Последнее особенно важно, так как полиэтилен в процессе переработки претерпевает изменения, негативно влияющие на его структуру. Все это происходит в результате термоокислительных деструктивных процессов, происходящих в результате высоких температур и больших сдвиговых нагрузок, возникающих в процессе экструзионной переработки. Уже 2-х или 3-х кратная переработка полиэтилена в литьевой машине или экструдере значительно снижает его физико-механические свойства и не позволяет без дополнительных мероприятий использовать вторичный полиэтилен. Основным способом борьбы с термоокислительной деструкцией ПЭ является введение в рецептуры термостабилизаторов.

В настоящее время многие зарубежные фирмы предлагают специальные компоненты, не только стабилизирующие, но и в некоторой степени восстанавливающие его свойства. Эти компоненты получили названия - рециклизаторы. Рециклизаторы позволяют решать несколько задач:

  • сохранить на высоком уровне прочностные и технологические свойства полиолефинов после 3-5 краткой его переработки;
  • обеспечить изделиям из полиэтилена высокую термостабильность в условиях эксплуатации при высоких температурах:

-  улучши прочностные и технологические свойства вторичного полиэтилена и тем самым использовать его в рецикле [7].

Авторы изучили влияние олигоэфиров канифоли на физико-механические характеристики, структуру и перерабатываемость полиэтилена различных марок.

Также, при введении битума в полимерную матрицу вторичного ПЭ и отходов производства полиэтилентерефталата, который улучшает совместимость ПЭ с битумом, получен дорожно-строительный материал[27].

 

1.3.Изготовление изделий из термопластов литьем под давлением

 

Литье под давлением -- наиболее распространенный и прогрессивный метод переработки пластмасс, так как позволяет получать изделия сравнительно сложной конфигурации при небольших затратах труда и энергии. Процесс изготовления изделий основан на заполнении формующей полости формы расплавом, его уплотнением за счет давления с последующим охлаждением [28]. К основным достоинствам литья под давлением относятся: универсальность по видам перерабатываемых пластиков, высокая производительность в режиме автоматизированного процесса, высокая точность получаемых изделий, возможность изготовления деталей весьма сложной геометрической формы, недостижимой при использовании любых других технологий. Кроме того, литьем под давлением производят изделия армированные, гибридные, полые, многоцветные, из вспенивающихся пластиков и др. Метод позволяет формовать изделия массой от долей грамма до десятков килограммов. Известны примеры производства литьем под давлением деталей механизмов ручных часов (масса 0,006г), оконных блоков и даже фрагментов ванных комнат с установленной арматурой (масса до 150кг) [28]. Литье под давлением разделяется на два четко определяемых процесса. Первый включает в себя плавление, перемешивание, сжатие и течение расплава, осуществляемые в пластикаторе литьевой машины, а второй -- собственно оформление изделия в полости формы [29].

Современные литьевые машины (ЛМ) представляют собой сложные технические устройства, оснащенные разнообразными средствами автоматизированного управления параметрами технологического процесса. Нередко их называют термопластавтоматами (ТПА) или реактопластавтоматами в зависимости от вида основного перерабатываемого материала.

Конструкции литьевых машин весьма разнообразны. Основными классификационными признаками ЛМ являются усилие запирания формы (кН), то есть смыкания формы, создаваемое прессовым блоком, и объем впрыска или мощность, выражаемая числом кубических сантиметров расплава, которые могут быть подготовлены машиной для однократной подачи в литьевую форму. Выпускаемые промышленностью серийные литьевые машины, как правило, объединены в типоразмерные ряды по двум, указанным выше параметрам.

Кроме того, ЛМ подразделяются по технологическим и основным конструктивным признакам:

- по способу пластикации - на одно-, двухчервячные, поршневые и червячно-поршневые;

- по особенностям пластикации - на ЛМ с совмещенной и раздельной пластикацией (предпластикацией);

- по количеству пластикаторов - с одним, двумя и более пластикационными узлами;

- по числу узлов запирания формы (узлов смыкания) - одно-, двух- и многопозиционные (ротационные, карусельные);

- по конструкции привода - электро- и гидромеханические, электрические;

по расположению оси цилиндра узла пластикации и плоскости разъема литьевой формы - горизонтальные, вертикальные, угловые [30].

Угловые ЛМ используются для литья крупных изделий с затрудненным извлечением из формы. Возможны два типа таких машин:

  • с горизонтальным пластикатором и вертикальным разъемом формы;
  • с горизонтальным разъемом формы и вертикальным узлом инжекции.

Вертикальные ЛМ наиболее удобны при производстве некрупных, в том числе армированных, деталей (обычно до 0,5 кг) в съемных формах.

Наибольшее распространение получили горизонтальные одночервячные с совмещенной пластикацией ТПА. Они обеспечивают объемы впрыска от 4 см до 70 000 см3 при усилии запирания формы от 25 до 60 000 кН. Принципиальная схема такого ТПА представлена на рис. 5.

 

                           18                     19 20   21        22

Рис. 5. Схема термопластавтомата с червячной пластикацией

 

Все функциональные блоки и устройства ТПА располагаются на жесткой раме (рис.5, поз. 22). Гранулированный полимерный материал из бункера 1 поступает в материальный цилиндр 2, захватывается вращающимся шнеком 3 и транспортируется в направлении мундштука 8. При этом гранулированный материал нагревается уплотняется в пробку и под действием тепла от трения о поверхность винтового канала червяка и поверхность цилиндра, а также за счет тепла от наружных зонных электронагревателей 4 пластицируется, то есть расплавляется под давлением, и, пройдя через обратный клапан 6, накапливается в зоне дозирования материального цилиндра, под действием возникающего при этом давления червяк отодвигается вправо, смещая плунжер 25 и хвостовик с имеющимся на нем (условно) концевым выключателем 26. Установкой ответного выключателя на линейке 27 регулируют отход червяка и, следовательно, подготовленный к дальнейшим действиям объем расплава в зоне дозирования и мундштука 8. После срабатывания концевых выключателей 26 и 27 вращение червяка прекращается -- требуемая доза расплава подготовлена. Далее, гидроприводом 5 пластикационный, называемый также и инжекционным, узел сдвигается влево до смыкания мундштука с литниковой втулкой, установленной в стойке 9. К этому моменту завершает смыкание частей прессформы 11 и 12 прессовый узел ЛМ. Он представляет собой, по сути, горизонтальный рычажно-гидравлический пресс, состоящий из передней 17 и передней 9 плит-стоек, соединенных, как правило, четырьмя колонна 10 и 14, по которым смещается вправо (смыкание) и влево (размыкание) ползун 13. Ползун приводится в движение от рычажно-гидравлического механизма 15, 16.

После приведения всех блоков в исходное состояние создается давление в гидроприводе 25 осевого движения червяка, который, действуя аналогично поршню, инжектирует расплав полимера из материального цилиндра в пресс-форму, где и образуется изделие. Наконечник 7, установленный на червяке, способствует уменьшению образования застойных зон после впрыска. В период формообразования изделия червяк приводится во вращение для подготовки следующего объема впрыска.

После охлаждения расплава до заданной температуры форма раскрывается, и изделие с помощью выталкивателей или применением робототехнических устройств удаляется из рабочей зоны литьевой машины.

Все подвижные узлы ЛМ обеспечиваются энергоносителем от главного привода, состоящего из электродвигателя 18, насосного блока 19, установленного в маслосборнике, и системы трубопроводов высокого 20 и низкого 21 давления. Для вращения червяка в данной схеме служит гидродвигатель 24 с зубчатой передачей 23.

К достоинствам машин описанного типа относят высокую производительность, универсальность по видам перерабатываемых материалов, удобство управления и обслуживания, а также надежность в эксплуатации.

Определенный недостаток таких ЛМ, впрочем, как и всех термопластавтоматов с совмещенной пластикацией, состоит в существенных потерях при осевом движении червяка от трения материала о стенки цилиндра, что затрудняет достижение высоких скоростей впрыска.

Одночервячные ТПА с усилием запирания от 2500 кН до 4000 кН являются наиболее востребованными машинами. В России подобные ТПА выпускают ГП «Красмашзавод» (г. Красноярск), ОАО «Савма» (г.Кимры), ОАО «Тульский НИТИ» (г. Тула), СП «Сувенир» (г.Ульяновск), Концерн «Точлитмаш» (г.Тирасполь) [31,32]. Из перечисленных предприятий серийное производство ТПА освоено ГП «Красмашзовод», технические характеристики продукции которого представлены в таблице 2.

 

 

Таблица 2

Технические характеристики термопластавтоматов серии 221 производства ГП «Красмашзавод»

Характеристика

ДК-160

ДК-250

ДК-400

1

2

3

4

Усилие запирания формы, кН

1600

2500

4000

Высота устанавливаемого инструмента, мм

200-400

250-500

380-800

Наибольший ход подвижной плиты, мм

400

500

710

Диаметр шнека, мм

50

60

70

Расстояние между колоннами в свету, мм:

горизонтальное

вертикальное

500

400

500

500

710

710

Объем впрыска, см3

300

630

1250

Объемная скорость впрыска, см3 /с

210

300

350

Давление литья, МПа

160

170

170

Пластикационная способность по полистиролу, кг/ч

135

250

270

Установленная мощность обогрева цилиндра, кВт

10,8

17,5

26

Установленная мощность главного привода, кВт

22

30

44

Число сухих циклов, мин-1

40

31

20

Масса, кг

5800

8500

19500

Габариты в плане, мм

4600´1300

5400´1200

8400´2000

Высота над уровнем пола, мм

1975

2200

2600


 

Широкомасштабное внедрение прогрессивных термопластов требует дальнейшего совершенствования технологии их переработки от подготовительной операции - сушки до финишной термообработки. С целью совершенствования и интенсификации процесса сушки термопластов была разработана [33,34] технология сушки в фонтанирующем слое с одновременным облучением ИК лучами. При конвекционно - лучевом теплообмене обеспечивалось объемное и быстрое удаление влаги из обрабатываемых термопластов до требуемых значений остаточной влажности, что позволяет исключить основные виды брака в деталях, образцах (пузыри, расслоения, трещины «серебра», включения - продукты термоокислительной деструкции), увеличивая их эксплуатационный ресурс в 2-4 раза. При этом производительность сушки возрастает в 10-20 раз.

Анализ литература показал, что базальтовые волокна относятся к перспективному классу наполнителей для ПКМ, так как обладают комплексом уникальных свойств: высоким уровнем физико-механических и химических свойств, долговечностью, стабильностью свойств при длительной эксплуатации в различных условиях. Базальтовые волокна экологичны, не выделяют опасных для здоровья людей веществ в воздушной и водной средах, негорючие, в настоящее время они полностью заменили канцерогенный асбест во всех областях его применения.

Для изготовления ПКМ довольно часто в качестве связующих применяют термопласты, в частности ПЭ, поэтому композиционные материалы на его основе находят все большие области применения. Широкое применение ПЭ объясняется сочетанием его ценных свойств со способностью перерабатываться при температуре 120 -- 280°С всеми известными высокопроизводительными методами, применяемыми при переработке термопластов. Кроме того, полиэтилен -- один из самых дешевых полимеризационных пластиков.

 

2. Экспериментальная часть

 

2.1. Объекты и методы исследования

 

Сырьем для производства БП служит ПЭВД марки 21008-75 со светостабилизирующей, термостабилизирующей и антикоррозийной добавкой (табл.3).

 

Таблица 3

Характеристика полиэтилена марки 21008-75

Наименование

показателя

Норма для полиэтилена

I сорт

II сорт

1

Плотность, г/см3

0,949

0,955

2

Показатель текучести расплава, г/10мин

5,0

10,0

3

Разброс показателя текучести расплава в пределах партии, %, не более

±10

±15

4

Количество включений, шт, не более

15

50

5

Массовая доля золы, %, не более

0,015

0,025

6

Массовая доля летучих веществ, %, не более

0,10

0,15

7

Рекомендуемая область применения

Для крупногабаритных изделий с толщиной стенок от 15мм и более и малогабаритных изделий с толщиной стенок от 0,5мм и более

8

Предел текучести при растяжении, МПа

23,0

21,0

9

Относительное удлинение при разрыве, %

220

200

10

Температура хрупкости, 0С, не выше

-80

-80

11

Модуль упругости при изгибе, МПа

784,0

850,0

12

Стойкость к растрескиванию, ч

10

10

Информация о работе Разработка технологии базальтопластиков на основе полиэтилена и базальтовой ваты