Состав магистрального газопровода

Автор работы: Пользователь скрыл имя, 06 Марта 2013 в 21:38, реферат

Краткое описание

Магистральный газопровод — это сложная система сооружений, предназначенных для транспортировки газа из районов его добычи или производства в районы потребления.
Магистральный газопровод характеризуют высоким давлением (до 55—75 кгс/см2), поддерживаемым в системе, большим диаметром труб (1020, 1220, 1420 мм) и значительной протяженностью (сотни и тысячи километров).

Содержание

1. Магистральный газопровод ………………………………………………..…… 3
2. Головные сооружения ……………………………………………………………6
3. Подземные хранилища газа (ПХГ) ……………………………………….…10
4. Газораспределительные станции ………………………………………………13
5. Блок очистки газа.............................................................................. 21
6. Блок подогрева газа ……………………………. …………...........................…..29
7. Список использованной литературы ………………………………….………37

Прикрепленные файлы: 1 файл

Магистральный транспорт газа.docx

— 1.43 Мб (Скачать документ)

При редуцировании влажного газа на ГРС могут происходить гидратообразование и обмерзание регуляторов и регулирующих клапанов. Чтобы предупредить эти нежелательные явления, в настоящее время широко применяют общий подогрев газа перед узлами редуцирования на ГРС с помощью кожухотрубных теплообменников.

По форме обслуживания ГРС подразделяются:

1) с вахтовым обслуживанием  — ГРС производительностью более 250 тыс. м3/ч и ГРС, снабжающие предприятия, на которых газ является технологическим сырьем;

2) с надомным и кустовым  обслуживанием операторами — ГРС производительностью до 250 тыс. м3/ч.

Вахтовое обслуживание, применяемое на практике весьма редко, предусматривает постоянное нахождение на ГРС дежурного персонала численностью 5—9 человек. В обязанности обслуживающего персонала, помимо обеспечения заданного режима подачи газа потребителям, входит производство текущего ремонта технологического оборудования, непосредственное участие в производстве средних и капитальных ремонтов оборудования и коммуникаций ГРС, а также обслуживание контрольно-измерительных и регулирующих приборов и установок по очитке и одоризации газа.

Безвахтовое, или, как принято называть, надомное, обслуживание предусматривается на автоматизированных ГРС, обеспечивающих без постоянного присутствия персонала бесперебойное снабжение потребителей газом при заданных параметрах давления и с необходимой степенью одоризации. Такие ГРС обслуживают два оператора с дежурством на дому. В квартиры операторов в случае неисправности передаются световой и звуковой нерасшифрованные сигналы, при получении которых дежурный оператор должен явиться на ГРС и устранить неполадки. В последние годы получило распространение кустовое обслуживание, при котором два оператора обслуживают 5—6 близлежащих ГРС.

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Блок очистки газа

Блок очистки газа на ГРС позволяет предотвратить попадание механических примесей и конденсата в оборудование, в технологические трубопроводы, в приборы контроля и автоматики станции и потребителей газа. Импульсный и командный газ автоматического регулирования и управления должен быть осушен и дополнительно очищен в соответствии с ОСТ 51.40—83.

Для очистки  газа на ГРС применяют пылевлагоулавливающие устройства различной конструкции, обеспечивающие подготовку газа в соответствии с действующими нормативными документами по эксплуатации. Главное требование к блоку очистки газа — автоматическое удаление конденсата в сборные емкости, откуда он по мере накопления вывозится с территории ГРС

Этот блок должен обеспечить такую степень очистки газа, когда концентрация примеси твердых частиц размером 10 мкм не должна превышать 0,3 мг/кг, а содержание влаги должно быть не больше величин, соответствующих состоянию насыщения газа.

Наибольшая трудность при очистке газа - образование гидратов углеводородных газов: белых кристаллов, напоминающих снегообразную кристаллическую массу. Твердые гидраты образуют метан (их формула 8СН4•46Н2О или СН2•5,75Н2О) и этан (8С2Н6•46Н2О) или С2Н6•5,75Н2О); пропан образует жидкие гидраты (8C3H8•136H2O или С3Н817Н2О). При наличии в газе сероводорода формируются как твердые, так и жидкие гидраты.

Гидраты — нестабильные соединения, которые при понижении давления и повышении температуры легко разлагаются на газ и воду. Они выпадают при редуцировании газа, обволакивая клапаны регуляторов давления газа и нарушая их работу. Кристаллогидраты откладываются и на стенках измерительных трубопроводов, особенно в местах сужающих устройств, приводя тем самым к погрешности измерения расхода газа. Кроме того, они забивают импульсные трубки, выводя из строя контрольно-измерительные приборы (КИП).

На ГРС предусмотрена одноступенчатая  очистка газа. От механических примесей и конденсата природный газ очищают с помощью газосепараторов по ОСТ 26—02645—72 (с полыми скрубберами или с насадками) типа ГС-11-64, ГСР-64, ГЖ-64. Насадки в скрубберах применяют сетчатые, жалюзийные и из колец Рашига. На монтажной площадке ГРС устанавливают не менее двух газосепараторов, работающих параллельно. Скорость движения газа в них не должна быть более 0,5—0.6 м/с. Газосепараторы подбирают с таким расчетом, чтобы при остановке одного из них, скорость газа в работающем не превышала 1 м/с. Газосепараторы должны быть теплоизолированы и установлены на отдельных фундаментах. Расстояние между ними — не менее их диаметра с теплоизоляцией.

Очистка газа от механических примесей и конденсата в газосепараторе происходит за счет:

1) изменения направления движения газа на  180°;

2) снижения скорости движения  газа до 0,5—0,6 м/с. В этом случае

VB   <   V0

(где VB — скорость витания механических частиц в газосепараторе; V0 — скорость оседания механических частиц в газосепараторе);

3) движения газа в насадке,  где отбиваются (выделяются) механические примеси и капли конденсата, которые падают на коническое дно газосепаратора. Как показывает практика, наименьший каплеунос конденсата происходит в газосепараторах с сетчатыми насадками.

Газовый конденсат и механические примеси скапливаются на дне газосепаратора. По мере накопления происходит автоматический сброс конденсата в подземную емкость при помощи дифференциального уровнемера жидкостного пневматического (ДУЖП), установленного на газосепараторе, и регулирующего клапана непрямого действия типа Кр-50-64-ВО, где Кр — тип клапана, 50 — условный диаметр клапана, мм; 64 — условное давление, кгс/см; ВО — газ (воздух) открывает. В отапливаемом помещении устанавливают два регулирующих клапана типа Кр, один из которых является рабочим, а другой — резервным.

Основные узлы клапана — мембранно-пружинный привод и двухседельное дроссельное устройство. Мембранно-пружинный привод клапана питает газ давлением 1 — 1.2 кгс/см, расход газа 0,5 — 0,6 м /ч. Когда уровень газового конденсата в газосепараторе поднимается до верхнего допустимого уровня, срабатывает ДУЖП и через реле мембранно-пружинный привод под действием давления газа перемещается вниз, открывая клапан для прохода конденсата и подземную емкость. Уровень газового конденсата в газосепараторе опускается до нижнего допустимого. При этом через реле подается сигнал на прекращение подачи газа на клапан Кр-50-64-ВО и мембранно-пружинный привод под действием пружины перемещается вверх, закрывая клапан для пропуска конденсата из газосе-паратора в подземную емкость.

По мере накопления конденсата в  подземной емкости он перекачивается насосом топливозаправочной колонки в автомобильную цистерну и вывозится для дальнейшего использования.

Кроме газосепараторов ОСТ 26—02645—72 для очистки газа применяют пылеуловители мультициклонные (рис. 5-1) Эффективность очистки в них зависит от дисперсного состава механических примесей в газе, скорости газа в циклонах, прилипаемости и влажности механических частиц и ряда других величин.

Мультициклонный пылеуловитель представляет собой сосуд, внутренняя полость которого разделена на три части: верхнюю, свободную от каких-либо устройств; среднюю, где находятся циклонные элементы; и нижнюю, где собираются конденсат и механические примеси.

Очищаемый газ поступает  в среднюю часть мультициклона. Через вихревые устройства циклонов газ поступает в нижнюю часть мультициклона, где происходит оседание всех примесей.

 

 

Рис. 5-1. Пылеуловитель мультициклонный.

1-муфта;  2 -    люк  для  чистки: 3. 4 — дренажи: 5 —   штуцер  автоматического сброса конденсата; 6 - штуцер датчика уровня жидкости:  7 — циклонный элемент:  8 — переливная труба Ø18x2.

 

Газ, освобожденный от частиц пыли и жидкости, проходит по внутренним трубкам циклонов, попадает в верхнюю  часть и далее направляется в газопроводы.

Мультициклоны можно оборудовать  установкой автоматического сброса конденсата в подземную сборную  емкость.

Мультициклоны эффективно очищают газы, содержащие сухие механические примеси. Очистка в мультициклонах природных газов от механических примесей и конденсата малоэффективна, так как они быстро забивают конусную часть циклонных элементов, при этом образуя наросты и даже пробки. Циклонные элементы выходят из строя, нарушая аэродинамику мультициклона. Поэтому мультициклоны приходится часто останавливать для чистки и промывки циклонных элементов. Эта работа трудоемкая и требует больших эксплуатационных затрат.

На ГРС малой пропускной способности  для очистки газа от механических примесей применяют висциновые фильтры (рис. 5-2).Такой фильтр состоит из корпуса, внутри которого смонтирована кассета (насадка), заполненная кольцами Рашига. Эти кольца бывают металлические и керамические. В основном применяют металлические размером 15x15x0,5 мм. Кольца Рашига смазывают висциновым маслом по ГОСТ 7611—55 (60% цилиндрового масла плюс 40 солярового).

Принцип работы висцинового фильтра следующий: частички механических примесей, попадая с потоком газа в фильтр, проходят через смоченные висциновым маслом кольца Рашига. меняя свое направление, и прилипают к поверхности колец.

Рис. 5-2. Висциновый фильтр Dу 700

1 — патрубок входной; 2— корпус фильтра; 3 — перфорированная сетка; 4 - люк эагрузочный; 5— засыпка (мелкие металлические или керамические кольца15x15 мм); 6 — штуцер; 7— патрубок выходной; 8 — люк разгрузочный; 9 — отбойный лист.

 

Как только перепад давления газа на входе в фильтр и на выходе из него возрастает, что свидетельствует о загрязненности насадки, кольца фильтра очищают паром, промывают содовым раствором, после чего их смазывают чистым висциновым маслом.

Процесс очистки и восстановления работоспособности висцинового фильтра весьма трудоемок, так как осуществляется вручную. Частые очистка и восстановление работоспособности фильтра oбycловлены тем. что масляная активная пленка с колец Рашига быстро растворяется и смывается конденсатом, находящимся в природном газом.

Висциновые фильтры предназначены для очистки газа только от механических примесей, так как их конструкция не позволяет оборудовать фильтры автоматическим сбросом конденсата в подземную емкость.

На некоторых ГРС для очистки  газа используют пылеуловители масляные с внутренними диаметрами 1000, 1200, 1400, 1600 мм. Число устанавливаемых на ГРС пылеуловителей зависит от расхода газа, но их должно быть не менее двух.

Пылеуловители масляные состоят из трех секций: нижней, промывочной, в которой все время поддерживается постоянный уровень солярового масла. Средней, осадительной, где газ освобождается от взвешенных частиц солярового масла. Верхней, отбойной, или скрубберной, где и происходит окончательная очистка газа. В нижней секции размещена насадка из пучка трубок, верхние концы которых закреплены в решетке. Нижние концы трубок открыты и имеют 16 продольных прорезей-щелей. Расстояние между концами трубок и поверхностью солярового масла 25—30 мм. Средняя секция пылеуловителя свободна от элементов конструкции, В верхней секции расположена скрубберная насадка, состоящая из жалюзийных листов с волнообразным профилем или металлической сетки, которые образуют лабиринт для прохода газа.

Газ через газоподводящий патрубок поступает в нижнюю секцию, ударяется об отбойный козырек и изменяет направление движения. Наиболее крупные взвешенные механические частицы падают в нижнюю часть пылеуловителя, заполненную маслом. Затем газ проходит над поверхностью масла, далее через пучок труб и через открытые нижние концы их, а также через прорези.

Далее по контактным трубкам газ поступает в среднюю, осадительную, секцию, где его скорость резко снижается. В результате чего механические частицы и капельки масла оседают на разделительную сетку в виде шлама и по дренажным трубкам стекают в нижнюю секцию. Средняя скорость газа в свободном сечении средней секции 0,5—0,6, в контактных трубках 2,5—3,0 м/с.

Из средней секции газ поступает в верхнюю, отбойную, где за счет изменения направления своего движения на 90° и наличия скрубберной насадки происходит дальнейшая очистка газа. Капельки солярового масла и мелкие механические частицы по специальным дренажным трубкам стекают в нижнюю секцию.

Очищенный газ из пылеуловителя  через выходной патрубок направляется или в блок подогрева, или в блок редуцирования. Загрязненное масло из нижней секции продувкой периодически удаляется по трубке для слива грязного масла в сборную емкость. Свежая порция масла заливается в пылеуловитель по специальной трубе для заполнения.

Дли очистки газа используют соляровое масло марки Л, имеющее следующие показатели: температура, ° С: застывания —20°. вспышки — не ниже 125; кинематическая вязкость по Энглеру 1,39— 1.76 о ВУ.  Для очистки и осушки командного газа для редуктора ВР-1 до остаточной относительной влажности 2—3% при температуре окружающего воздуха 16—20° С применяют фильтр-осушитель.Он состоит из корпуса  (трубы диаметром 500 или 700 мм), 3/4 объема которого заполнены влагопоглотителем (цеолитом или силикагелем), размещенным в верхней части, между двумя сетками и двумя решетками. Нижняя часть незаполненного объема фильтра предназначена для сбора конденсата, который периодически сливается через дренажный штуцер.

Информация о работе Состав магистрального газопровода