Измерения давления автомобиля

Автор работы: Пользователь скрыл имя, 20 Января 2014 в 13:50, курсовая работа

Краткое описание

Давление-мера распределения действия силы по поверхности.
Метод измерения - прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Метод измерений реализуется устройством средств измерений.
Средство измерений-техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и хранящее единицу физической величины, размер которой принимают неизменным.

Прикрепленные файлы: 1 файл

курсовая .docx

— 442.96 Кб (Скачать документ)

Для измерений давления до 40 или 60 бар применяются, как правило, согнутые с углом витка около 2700, кругообразные пружины. Для измерений давления с более высокими значениями используются пружины с несколькими лежащими друг над другом витками и одинаковым витковым диаметром (винтовая

пружина) или со спиралеобразными витками, лежащими в одной плоскости (плоская спиральная пружина). Трубчатые пружины обладают сравнительно низким перестановочным усилием. Поэтому их защита от перегрузки может проводиться только с ограничениями.

Показания лежат в диапазоне  от 0 ...0,6 до 0 ... 4000 бар при точности показаний (классе) от 0,1 до 4,0%. Манометры с трубчатой пружиной изображен на рисунке 5.

 

                         

                          Рисунок 5 - Манометры с трубчатой пружиной

 

                            5.3 Манометры с пластинчатой пружиной

Пластинчатые пружины представляют собой тонкие гофрированные мембраны кругообразной формы, которые зажимаются или привариваются по краю

между двумя фланцами и вступают в соприкосновение с измеряемой средой только с одной стороны. Вызванный в результате такого соприкосновения

прогиб пропорционален величине давления. Движение передаётся посредством стрелочного механизма на шкалу. Пластинчатые пружины обладают сравнительно высоким перестановочным усилием. В результате кольцеобразного крепления пластинчатые пружины менее восприимчивы к вибрациям по сравнению с трубчатыми пружинами, однако погрешность показаний при изменениях температуры у них больше. Благодаря опорам для мембран достигается повышенная стойкость к перегрузкам. Покрытия или фольга, наносимые на поверхность пластинчатых пружин обеспечивают защиту от коррозийных измеряемых сред. Широкие соединителные отверстия или открытые соединительные фланцы, а также возможности по промывке делают пластинчатые пружины, особенно пригодными при работе

с высоковязкими, загрязненными или кристаллизирующимися веществами. Диапазоны показаний лежат в пределах 0 ... 16 мбар и 0...40 бар с классом точности 1,6 и 2,5. Более высокий класс точности обеспечивают манометры с

плоскими пружинами в специальном  исполнении.

        

                    Рисунок 6 - Манометры с пластинчатой пружиной

 

                              5.4 Манометры с коробчатой пружиной

Давление измеряемой среды воздействует на внутреннюю сторону коробки, состоящей из двух кругообразных, гофрированных, герметично

прилегающих друг к другу мембран. Возникающее под давлением поступательное движение пропорционально величине давления. Движение передается на шкалу с помощью стрелочного механизма. Манометры с коробчатой пружиной особенно пригодны для измерений давления газообразных

сред. Защита от перегрузки возможна только в определенных границах. Для повышения чувствительности в манометре может устанавливаться ряд

коробчатых пружин ("пакет" коробчатых пружин). Диапазоны показаний лежат в пределах от 0 ... 2,5мбар до макс. 0 ... 0,6 бар с классом точности от 0,1до 2,5. Манометры с коробчатой пружиной изображен на рисунке 6.

                          

                    Рисунок 6 - Манометры с коробчатой пружиной

                               5.5 Манометры абсолютного давления

Данные приборы используются для измерений давления независимо от колебаний атмосферного давления окружающей среды. В соответствии с различными сферами применения и диапазонами показаний, манометры для измерений абсолютного давления изготавливают согласно принципам измерений и формам чувствительных элементов, которые применяются в манометрах для измерений относительного давления. Давление измеряемой среды определяется по отношению к базовому давлению, которое равняется абсолютному давлению с величиной 0 (= абсолютный вакуум). Это означает, что на стороне измерительного элемента, не соприкасающейся с измеряемой средой, должно присутствовать базовое давление. Присутствие базового давления при использовании соответствующей формы пружин достигается по

средством вакуумирования и герметизации соответствующей измерительной камеры или облегающего корпуса. Передача движения измерительного элемента и индикация давления осуществляются аналогично выше описанным манометрам относительного давления. Манометры абсолютного давления изображен на рисунке 7.

                              

                             Рисунок 7 - Манометры абсолютного давления

                            5.6 Манометры дифференциального давления

Приборы дифференциального давления применяются для измерений разницы между двумя отдельными давлениями. Базовым давлением является то, которое присутствует на стороне, взятой за эталонную. В качестве чувствительных элементов используются пружины тех же форм, что и в манометрах относительного давления. Как правило, чувствительные элементы подвергаются воздействию давления с обеих сторон. Установленная таким образом разность

давлений передается с помощью стрелочного механизма непосредственно на шкалу. Если измеряемые давления одинаковы, измеряемый элемент остается неподвижным и показания прибора отсутствуют. Измерение низких разностных давлений возможно даже при высоком статическом давлении. Защита от высоких перегрузок обеспечивается с помощью пластинчатых чувствительных элементов.

При выборе манометра следует учитывать допустимое статическое (рабочее) давление, а также максимально допустимую перегрузку со стороны

+ и  .  Для преобразования деформации чувствительного элемента в показания стрелки используются принципы, аналогичные принципам действия манометров избыточного давления. Диапазоны показаний лежат в пределах от 0 ... 16 мбар до макс. 0 ... 25 бар с классом точности от 0,6 до 2,5.

Области применения: оснащение фильтров (контроль состояния фильтра)

измерения уровня заполнения резервуаров, находящихся под давление измерение расхода (падение давления надиафрагме). Манометр дифференциального давления изображен на рисунке 7.

                       

             Рисунок 7 - Манометр дифференциального давления

 

 

                                       5.2 Современные манометры

Современными манометрами являются:

  • Жидкостные манометры
  • Поршневые манометры
  • Деформационные манометры

                                     5.2.1  Жидкостные манометры

Честь первооткрывателя принадлежит крупнейшему итальянскому художнику и ученому Леонардо да Винчи (1452-1519 гг.), который впервые применил пьезометрическую трубку для измерения давления воды в трубопроводах. К сожалению, его труд „О движении и измерении воды" был опубликован лишь в XIX веке. Поэтому принято считать, что впервые жидкостный манометр был создан в 1643 г. итальянскими учеными Торричелли и Вивиани, учениками Галилео Галилея, которые при исследовании свойств ртути, помещенной в трубку обнаружили существование атмосферного давления. Так появился ртутный барометр. В течение последующих 10—15 лет во Франции (Б. Паскаль и Р. Декарт) и Германии (О. Герике) были созданы различные разновидности жидкостных барометров, в том числе и с водяным заполнением. В 1652 г. О. Герике продемонстрировал весомость атмосферы эффектным опытом с откачанными полушариями, которые не могли разъединить две упряжки лошадей  (знаменитые „магдебургские полушария"). Дальнейшее развитие науки и техники привело к появлению большого количества жидкостных манометров различных типов, применяемых до настоящего времени во многих отраслях. Однако, в силу ряда специфических особенностей принципа действия жидкостных манометров их удельный вес по сравнению с манометрами других типов относительно невелик и, вероятно, будет уменьшаться и в дальнейшем. Тем не менее при измерениях особо высокой точности в области давлений, близких к атмосферному давлению, они пока незаменимы. Не потеряли своего значения жидкостные манометры  в ряде областей:микроманометрии, барометрии, метеорологии, при физико-технических исследованиях.

                                       5.2.2 Поршневые манометры

 Поршневые манометры появились позже жидкостных. Впервые поршневой манометр был применен для измерения давления в 1833 г. Парротом и Ленцсм (Российская Академия наук) при изучении сжимаемости воздуха и других свойств газов, причем значение давления для того времени было очень большим (10 МПа). Однако, в принципе, открытие поршневого метода могло бы произойти значительно раньше. Если О. Герике в своем опыте с откачанными „магдебургскими полушариями" довел число лошадей в каждой упряжке до количества, необходимого Для разъединения полушарий, то он смог бы определить атмосферное давление в, .Лошадиных силах" на площадь поперечного сечения шара еще в 1652 г. Широкое распространение поршневые манометры получили благодаря Амага (Франция) и Рухгольцу (Германия), и особенно последнему, который в 1883 г. организовал промышленный выпуск этих приборов. Дальнейшее развитие поршневой манометрии шло, в основном, в сторону увеличения точности и верхних пределов измерений, а начиная с тридцатых годов текущего столетия поршневые манометры стали вытеснять жидкостные и при точных измерениях давлений, близких к атмосферному давлению. Большой вклад в развитие поршневой манометрии внесли проф. М.К. Жоковский, который впервые разработал целостную теорию приборов с неуплотненным поршнем, П.В. Индрик, В.Н. Граменицкий и многие другие их последователи. В настоящее время в нашей стране и за рубежом поршневые манометры играют ведущую роль при поверке и испытаниях манометрических приборов в широком диапазоне давлений от 1 кПа до десятков тысяч МПа и находят все большее применение в качестве национальных государственных эталонов давления. 

                                 5.2.3 Деформационные манометры

 По мере развития промышленности, особенно в связи с появлением паровых машин и железных дорог, потребовались более удобные, чем жидкостные манометры приборы. Первый деформационный манометр с трубчатым чувствительным элементом был изобретен случайно. Рабочий, при изготовлении змеевика для дистилляционного аппарата, сплющил поперечное сечение цилиндрической трубки, изогнутой по спирали. Тогда, чтобы восстановить форму трубки, один конец ее заглушили, а в другой конец насосом дали давление воды. При этом часть трубки с деформированным сечением приняла цилиндрическую форму, а спираль на этом участке разогнулась. Этот эффект был использован немецким инженером Шинцем, который в 1845 г. применил трубчатый чувствительный элемент для измерения давления. Эту дату и принято считать днем рождения деформационных манометров, хотя идея создания деформационного барометра-анероида еще в 1702 г. была предложена немецким философом и математиком Лейбницем (1646—1716 гг.), а патент на него получен Види в 1844 г. Промышленное производство трубчатых деформационных манометров было организовано французским фабрикантом Бурдоном, получившим в 1849 г. патент на изобретение одновитковой трубчатой пружины, именем которого она до сих пор часто называется („Бурдоновская трубка"). В 1850 г. Примавези и Шеффер изобрели мембранный манометр, а несколько позже в 1881 г. Клейманом получен патент на сильфонный манометр. Простота и компактность деформационных манометров, возможность их применения в различных условиях эксплуатации очень быстро поставили их на первое место в технике измерения давления практически во всех отраслях народного хозяйства. Диапазон измерений деформационных манометров охватывает почти 10 порядков, простираясь от 10 Па (1 мм вод.ст.) до 1-2 ГПа (более 10000 кгс/см2). При этом достигается высокая точность измерений, в отдельных случаях погрешности измерений не превышают 0,02—0,05 %.

 

 

 

 

                                               

 

 

 

 

 

 

 

                                               6. Виды манометра

                      6.1 Деформационных механических манометров

В деформационных манометрах используется зависимость деформации чувствительного элемента или развиваемой им силы отизмеряемого давления. Пропорциональная давлению деформация или сила преобразуются в показания или соответствующие изменения выходного сигнала. Большинство деформационных манометров и дифманометров содержат упругие чувствительные элементы, осуществляющие преобразование давления в пропорциональное перемещение рабочей точки. Наиболее распространенные упругие чувствительные элементы представлены на рис. 8. К их числу относятся трубчатые пружины, сильфоны, плоские и гофрированные мембраны, мембранные коробки, вялые мембраны с жестким центром.

 
            

    Рис. 8. Упругие чувствительные элементы деформационных манометров;

  а - трубчатые пружины; б – сильфоны; в, г - плоские и гофрированные мембраны; д - мембранные коробки; е - вялые мембраны с жестким центром

Статической (упругой) характеристике чувствительного элемента, связывающей  перемещение рабочей точки с  давлением, присуще наличие начальной  зоны пропорциональных перемещений, в которой имеют место упругие деформации, и нелинейной области, в которой возникают пластические деформации. Несовершенство упругих свойств материалов чувствительных элементов обусловливает наличие гистерезиса статической характеристики и упругое последействие. Последнее проявляется в запаздывании перемещения рабочей точки по отношению к приложенному давлению и медленном возвращении ее в начальное положение после снятия давления. Форма и крутизна статической характеристики зависят от конструкции чувствительного элемента, материала, температуры. Рабочий диапазон выбирается в области упругих деформаций с обеспечением запаса на случай перегрузки чувствительного элемента давлением. Полые одновитковые трубчатые пружины имеют эллиптическое или плоскоовальное сечение. Один конец пружины, в который поступает измеряемое давление, закреплен неподвижно в держателе, второй (закрытый) — может перемещаться. Под действием разности измеряемого внутреннего давления и внешнего атмосферного трубчатая пружина деформируется: малая ось сечения трубки увеличивается, большая уменьшается, при этом пружина раскручивается и ее свободный конец совершает перемещение в 1 ...3 мм. Для давлений до 5 МПа трубчатые пружины изготовляют из латуни, бронзы, а для более высоких давлений — из легированных сталей и сплавов никеля. Сильфонные и мембранные чувствительные элементы имеют более широкие возможности для увеличения эффективной площади с целью получения требуемого перестановочного усилия, что позволяет использовать их для измерения малых избыточных давлений и разрежения. Сильфон - это тонкостенная трубка с поперечными кольцевыми гофрами на боковой стенке. Жесткость сильфона зависит от материала, наружного и внутреннего диаметров, толщины стенки заготовки, радиуса закругления гофр r и угла их уплотнения a, числа гофр. Сильфоны бывают цельнотянутыми и сварными. Благодаря значительному прогрессу в технологии изготовления сильфонов, они получили широкое распространение в манометрах и дифманометрах с силовой компенсацией. Наиболее разнообразными по конструкции являются мембранные чувствительные элементы. Представленная на рис. 1 в, плоская или пластинчатая мембрана представляет собой гибкую тонкую пластину, закрепленную по окружности. Под влиянием разности давлений, действующих с обеих сторон на мембрану, ее центр перемещается. Плоская мембрана имеет нелинейную упругую характеристику и малые перемещения рабочей точки, в связи с чем ее в основном применяют для преобразования давления в силу (пьезоэлектрические преобразователи), поверхностные деформации (тензопреобразователи) и малые перемещения (емкостные и резонансные преобразователи). Преобразователи с такими чувствительными элементами рассмотрены в разделе электрических манометров. Для улучшения статической характеристики используют гофрированные мембраны и мембранные коробки.  Профили мембран могут быть пильчатыми, трапецеидальными, синусоидальными. Гофрирование мембраны приводит к увеличению ее жесткости, спрямлению статической характеристики и увеличению зоны пропорциональных перемещений рабочей точки. Более широко используются мембранные коробки, которые представляют собой сваренные или спаянные по внешней кромке мембраны. Жесткость коробки вдвое ниже жесткости каждой из мембран. В дифманометрах, чувствительных элементах регуляторов прямого действия используются мембранные блоки, включающие две коробки и более. Для измерения малых давлений применяются вялые мембраны изготовленные из бензомаслостойкой прорезиненной ткани. В центре мембраны крепятся металлические пластины, в одну из которых упирается винтовая пружина, выполняющая функции упругого элемента. Упругие свойства материалов чувствительных элементов зависят от температуры. Так, у трубчатых пружин температурный коэффициент снижения жесткости при росте температуры достигает 3 * 10 -4°С. Это определяет необходимость защиты приборов от воздействия высоких температур измеряемой среды. С течением времени у упругих чувствительных элементов накапливаются пластические деформации и уменьшаются упругие, это приводит к снижению крутизны статической характеристики прибора и ее смещению. Процесс изменения статической характеристики ускоряется при повышенной температуре и пульсации измеряемого давления. Конструкция деформационных манометров и дифманометров обычно предусматривает возможность коррекции отклонений показаний или выходного сигнала, вызванных старением упругого чувствительного элемента. В соответствии с используемым в приборах типом рассмотренных чувствительных элементов деформационные манометры подразделяются на пружинные, сильфонные и мембранные, разновидности этих групп приборов показывающих и с дистанционной передачей показаний рассмотрены ниже.

Информация о работе Измерения давления автомобиля