Типы електростанций

Автор работы: Пользователь скрыл имя, 23 Ноября 2011 в 18:30, реферат

Краткое описание

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии.
По особенностям основного технологического процесса преобразования энергии и виду используемого энергетического ресурса электростанции подразделяют на тепловые (ТЭС), атомные (АЭС), гидроэлектростанции (ГЭС), гидроаккумулирующие (ГАЭС), газотурбинные (ГТУ) и др.

Содержание

Введение 1
КЭС 1
ТЭЦ 5
ГТУ 7
АЭС 7
ГЭС 10
ГАЭС 11

Прикрепленные файлы: 1 файл

Типы електростанций.docx

— 314.10 Кб (Скачать документ)

Министерство  образования и науки Российской Федерации

Иркутский государственный технический университет 
 
 
 
 
 
 
 
 
 

Реферат 

по дисциплине электроэнергетика

на тему

«Типы электростанций» 
 
 
 
 

Выполнил: студент группы ЭП-06-1

Азорин  А. Ю.

Проверил: Старостина Э. Б. 
 
 
 
 
 
 

Иркутск 2009

Содержание

Введение           1

КЭС            1

ТЭЦ            5

ГТУ            7

АЭС            7

ГЭС            10

ГАЭС           11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение

Электростанциями  называются предприятия или установки, предназначенные для производства электроэнергии.

По особенностям основного технологического процесса преобразования энергии и виду используемого  энергетического ресурса электростанции подразделяют на тепловые (ТЭС), атомные (АЭС), гидроэлектростанции (ГЭС), гидроаккумулирующие (ГАЭС), газотурбинные (ГТУ) и др. 

КЭС

· На тепловых электростанциях химическая энергия сжигаемого топлива преобразуется в котле в энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединенную с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат уголь, торф, горючие сланцы, а также газ и мазут. В отечественной энергетике на долю КЭС приходится до 60% выработки электроэнергии.

· Основными особенностями КЭС являются: удаленность от потребителей электроэнергии, что определяет в основном выдачу мощности на высоких и сверхвысоких напряжениях, и блочный принцип построения электростанции. Мощность современных КЭС обычно такова, что каждая из них может обеспечить электроэнергией крупный район страны. Отсюда еще одно название электростанций этого типа — государственная районная электрическая станция (ГРЭС).

· На рисунке 1 показана упрощенная принципиальная технологическая схема энергоблока КЭС. Энергоблок представляет собой как бы отдельную электростанцию со своим основным и вспомогательным оборудованием и центром управления — блочным щитом. Связей между соседними энергоблоками по технологическим линиям обычно не предусматривается.

Рис. 1. Принципиальная технологическая схема КЭС

1 — склад  топлива и система топливоподачи; 2 — система топливоприготовления;

3 — котел; 4 —  турбина; 5 - конденсатор; 6 - циркуляционный  насос; 7 - конденсатный насос; 8 - питательный  насос; 9 - горелки котла; 10 - вентилятор; 11 - дымосос; 

12 - воздухоподогреватель; 13 — водяной экономайзер; 14 - подогреватель  низкого давления; 15 — деаэратор; 16 — подогреватель высокого давления.

· Построение КЭС по блочному принципу дает определенные технико-экономические преимущества, которые заключаются в следующем:

1) облегчается  применение пара высоких и  сверхвысоких параметров вследствие  более простой системы паропроводов, что особенно важно для освоения  агрегатов большой мощности;

2) упрощается  и становится более четкой  технологическая схема электростанции, вследствие чего увеличивается  надежность работы и облегчается  эксплуатация;

3) уменьшается,  а в отдельных случаях может  вообще отсутствовать, резервное  тепломеханическое оборудование;

4) сокращается  объем строительных и монтажных  работ;

5) уменьшаются  капитальные затраты на сооружение  электростанции;

6) обеспечивается  удобное расширение электростанции, причем новые энергоблоки при  необходимости могут отличаться  от предыдущих по своим параметрам.

· Технологическая схема КЭС состоит из нескольких систем: топливоподачи; топливоприготовления; основного пароводяного контура вместе с парогенератором и турбиной; циркуляционного водоснабжения; водоподготовки; золоулавливания и золоудаления и, наконец, электрической части станции.

· Механизмы и установки, обеспечивающие нормальное функционирование всех этих элементов, входят в так называемую систему собственных нужд станции (энергоблока).

· Наибольшие энергетические потери на КЭС имеют место в основном пароводяном контуре, а именно в конденсаторе, где отработавший пар, содержащий еще большое количество тепла, затраченного при парообразовании, отдает его циркуляционной воде. Тепло с циркуляционной водой уносится в водоемы, т. е. теряется. Эти потери в основном определяют КПД электростанции, составляющий для самых современных КЭС не более 40-42%.

· Электроэнергия, вырабатываемая электростанцией, выдается на напряжении 110 - 750 кВ и лишь часть ее отбирается на собственные нужды через трансформатор собственных нужд, подключенный к выводам генератора.

· Генераторы и повышающие трансформаторы соединяют в энергоблоки и подключают к распределительному устройству высокого напряжения, которое обычно выполняется открытым (ОРУ). Варианты расположения основных сооружений могут быть различными, что иллюстрируется рисунке 2.

· Современные КЭС оснащаются в основном энергоблоками 200 - 800 МВт. Применение крупных агрегатов позволяет обеспечить быстрое наращивание мощностей электростанций, приемлемые себестоимость электроэнергии и стоимость установленного киловатта мощности станции.

· Наиболее крупные КЭС имеют мощность 4 - 6,4 млн. кВт с энергоблоками 500 и 800 МВт. Предельная мощность КЭС определяется условиями водоснабжения и влиянием выбросов станции на окружающую среду.

· Современные КЭС весьма активно воздействуют на окружающую среду: на атмосферу, гидросферу и литосферу. Их влияние на атмосферу выражается в большом потреблении кислорода воздуха для горения топлива и в выбросе значительного количества продуктов сгорания. Это в первую очередь газообразные окислы углерода, серы, азота, ряд которых имеет высокую химическую активность. Летучая зола, прошедшая через золоуловители, загрязняет воздух. Наименьшее загрязнение атмосферы (для станций одинаковой мощности) отмечается при сжигании газа и наибольшее - при сжигании твердого топлива с низкой теплотворной способностью и высокой зольностью. Необходимо учесть также большие уносы тепла в атмосферу, а также электромагнитные поля, создаваемые электрическими установками высокого и сверхвысокого напряжения.

· КЭС загрязняет гидросферу большими массами теплой воды, сбрасываемыми из конденсаторов турбин, а также промышленными стоками, хотя они проходят тщательную очистку.

Рис. 2. Варианты расположения основных сооружений КЭС

1 - главный корпус; 2 - склад топлива; 3 - дымовые трубы; 4 - трансформаторы блоков;

5, 6 — распределительные  устройства; 7 - насосные станции; 

8 - промежуточные  опоры электрических линий.

· Для литосферы влияние КЭС сказывается не только в том, что для работы станции извлекаются большие массы топлива, отчуждаются и застраиваются земельные угодья, но и в том, что требуется много места для захоронения больших масс золы и шлаков (при сжигании твердого топлива).

· Влияние КЭС на окружающую среду чрезвычайно велико. Например, о масштабах теплового загрязнения воды и воздуха можно судить по тому, что около 60 % тепла, которое получается в котле при сгорании всей массы топлива, теряется за пределами станции. Учитывая размеры производства электроэнергии на КЭС, объемы сжигаемого топлива, можно предположить, что они в состоянии влиять на климат больших районов страны. В то же время решается задача утилизации части тепловых выбросов путем отопления теплиц, создания подогревных прудовых рыбохозяйств. Золу и шлаки используют в производстве строительных материалов и т. д. 

ТЭЦ

· Этот вид электростанций предназначен для централизованного снабжения промышленных предприятий и городов электроэнергией и теплом. Являясь, как и КЭС, тепловыми электростанциями, они отличаются от последних использованием тепла «отработавшего» в турбинах пара для нужд промышленного производства, а также для отопления, кондиционирования воздуха и горячего водоснабжения. При такой комбинированной выработке электроэнергии и тепла достигается значительная экономия топлива по сравнению с раздельным энергоснабжением, т. е. выработкой электроэнергии на КЭС и получением тепла от местных котельных. Поэтому ТЭЦ получили широкое распространение в районах (городах) с большим потреблением тепла и электроэнергии. В целом на ТЭЦ производится около 25% всей электроэнергии.

· Особенности технологической схемы ТЭЦ показаны на рисунке 3. Части схемы, которые по своей структуре подобны таковым для КЭС, здесь не указаны. Основное отличие заключается в специфике пароводяного контура и способе выдачи электроэнергии.

· Специфика электрической части ТЭЦ определяется расположением электростанции вблизи центров электрических нагрузок. В этих условиях часть мощности может выдаваться в местную сеть непосредственно на генераторном напряжении. С этой целью на электростанции создается обычно генераторное распределительное устройство (ГРУ). Избыток мощности выдается, как и в случае КЭС, в энергосистему на повышенном напряжении.

Рис. 3. Особенности  технологической схемы ТЭЦ

1 - сетевой  насос, 2 - сетевой подогреватель

· Существенной особенностью ТЭЦ является также повышенная мощность теплового оборудования по сравнению с электрической мощностью электростанции. Это обстоятельство предопределяет больший относительный расход электроэнергии на собственные нужды, чем на КЭС.

· Размещение ТЭЦ преимущественно в крупных промышленных центрах, повышенная мощность теплового оборудования в сравнении с электрическим повышают требования к охране окружающей среды. Так, для уменьшения выбросов ТЭЦ целесообразно, где это возможно, использовать в первую очередь газообразное или жидкое топливо, а также высококачественные угли. Размещение основного оборудования станций данного типа, особенно для блочных ТЭЦ, соответствует таковому для КЭС. Особенности имеют лишь те станции, у которых предусматривается большая выдача электроэнергии с генераторного распределительного устройства местному потребителю. В этом случае для ГРУ предусматривается специальное здание, размещаемое вдоль стены машинного зала (рис. 4).

Рис. 4. Вариант размещения основного оборудования на площадке ТЭЦ с отдельным зданием ГРУ

1 - дымовые трубы; 2 - главный корпус, 3 - многоамперные  токопроводы; 4 - здание ГРУ; 5 - трансформатор  связи; 6 – ОРУ; 7 - градирни (склад  топлива для ТЭЦ не показан).

Газотурбинные электростанции

· Основу современных газотурбинных электростанций составляют газовые турбины мощностью 25-100 МВт. Упрощенная принципиальная схема энергоблока газотурбинной электростанции представлена на рисунке 5.

Рис. 5. Принципиальная технологическая схема электростанции с газовыми турбинами

КС - камера сгорания; КП — компрессор; ГТ - газовая турбина; С - генератор;

Т - трансформатор; М - пусковой двигатель.

· Топливо (газ, дизельное горючее) подается в камеру сгорания, туда же компрессором нагнетается сжатый воздух. Горячие продукты сгорания отдают свою энергию газовой турбине, которая вращает компрессор и синхронный генератор. Запуск установки осуществляется при помощи разгонного двигателя и длится 1—2 мин, в связи с чем газотурбинные установки (ГТУ) отличаются высокой маневренностью и пригодны для покрытия пиков нагрузки в энергосистемах. Основная часть теплоты, получаемая в камере сгорания ГТУ, выбрасывается в атмосферу, поэтому общий КПД таких электростанций составляет 25 –30 %.

Информация о работе Типы електростанций