Теплоизоляция трубопроводов

Автор работы: Пользователь скрыл имя, 30 Ноября 2013 в 19:59, реферат

Краткое описание

Десятки, сотни, тысячи километров трубопроводов протянулись по всей России, по одним транспортируется газ, по другим нефть, некоторые транспортируют тепло и воду в наши жилища, а другие удаляют использованную жидкость из наших жилищ. Трубы трудятся везде, на заводах и фабриках, школах и институтах, больницах, прачечных, охлаждают турбины ГРЭС, они словно вены человеческого организма опоясали всю Россию, без них никуда.

Содержание

Введение. Тепловая изоляция оборудования и трубопроводов ………….…...3
Цели использования теплоизоляции труб ………………………………….…4
1.1. Обеспечения заданной температуры на поверхности изоляции. …..….…4
1.2. Предотвращения замерзания содержащейся в них жидкости ……….…4
1.3. Предотвращения конденсации влаги на поверхности изоляции ……...…5
1.4. Теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки……………………………………………..…5
Виды и материалы теплоизоляции для трубопроводов…………………..……5
2.1. .Предизолированные трубопроводы: ………………………………………7
2.2. Минеральная вата……………………………………………………..……10
2.3.Базальтовая теплоизоляция Батиз……………………………….…………12
2.4 .Батиз- Шнур……………………………………………………………...…14
2.5. Вспененный синтетический каучук ……………………...………………15
2.6. Порилекс НПЭ-Т ………………………………………….………………17
2.7. Астратек……………………………………………………….……………18
2.8. Засыпучие уплотнители……………………………………...……………19
2.9. . Монолитные теплоизоляционные конструкции. ………….……………20
2.10. Пенополимерминерал (полимербетон) …………………………………23
Подведение итогов………………………………………………………………23
Литература………………………………

Прикрепленные файлы: 1 файл

popytka_3.doc

— 653.50 Кб (Скачать документ)

 

МИНОБРНАУКИ РОССИ


Федеральное государственное  бюджетное образовательное учреждение

высшего профессионального  образования

«Нижегородский государственный  архитектурно-строительный университет»

(ННГАСУ)

Общетехнический факультет

 

КАФЕДРА ТЕПЛОГАЗОСНАБЖЕНИЯ

по дисциплине

Инженерные системы зданий и сооружений

Реферат на тему

«Теплоизоляция  трубопроводов»

 

 

Выполнил студент 2 курса гр.1206                                                  ВалетовД.С

 

  Проверил   Старший преподаватель:                                         Семикова Е.Н.

 

 

 

 

Нижний Новгород

2013


Содержание: 

Введение. Тепловая изоляция оборудования и трубопроводов ………….…...3

  1. Цели использования теплоизоляции труб ………………………………….…4

1.1. Обеспечения заданной температуры на поверхности изоляции. …..….…4

1.2.   Предотвращения замерзания содержащейся в них жидкости ……….…4

1.3. Предотвращения конденсации влаги на поверхности изоляции ……...…5

1.4. Теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки……………………………………………..…5

  1. Виды и материалы теплоизоляции для трубопроводов…………………..……5

2.1. .Предизолированные трубопроводы: ………………………………………7

2.2. Минеральная вата……………………………………………………..……10

2.3.Базальтовая теплоизоляция Батиз……………………………….…………12

2.4 .Батиз- Шнур……………………………………………………………...…14

 2.5. Вспененный синтетический каучук ……………………...………………15

2.6. Порилекс НПЭ-Т  ………………………………………….………………17

2.7. Астратек……………………………………………………….……………18

2.8. Засыпучие уплотнители……………………………………...……………19

2.9. . Монолитные теплоизоляционные конструкции. ………….……………20

2.10.  Пенополимерминерал (полимербетон) …………………………………23

  1. Подведение итогов………………………………………………………………23
  2. Литература……………………………………………………………………..26

 

 

 

 

Введение. Тепловая изоляция оборудования и трубопроводов

Десятки, сотни, тысячи километров трубопроводов протянулись по всей России, по одним транспортируется газ, по другим нефть, некоторые транспортируют тепло и воду в наши жилища, а другие удаляют использованную жидкость из наших жилищ. Трубы трудятся везде, на заводах и фабриках, школах и институтах, больницах, прачечных, охлаждают турбины ГРЭС, они словно вены человеческого организма опоясали всю Россию, без них никуда.

Что же такое  трубопровод?

Трубопроводом называется устройство предназначенное для транспортировки жидких, газообразных или сыпучих веществ. Основные виды трубопроводов приведены на рисунке ниже.


Рис.1

В зависимости  от транспортируемой среды применяются  термины: водопровод, газопровод, паропровод, нефтепровод, воздухопровод, маслопровод, кислотопровод, кислородопровод, бензопровод, молокопровод и т.д.

Основными общими параметрами трубопровода и арматуры являются: условный диаметр 

 

 

 

1.   цели использования  теплоизоляции труб

На большей части  перечисленных трубопроводов необходимо применять теплоизоляционные материалы и в зависимости от особенностей трубопровода область применения теплоизоляции может быть разной:

 

1.1 теплоизоляция трубопроводов с целью обеспечения заданной температуры на поверхности изоляции.

Тепловую изоляцию трубопроводов  по заданной температуре на поверхности выполняют в случае, когда тепловые потери трубопровода не регламентированы, но в соответствии с требованиями техники безопасности необходимо защитить обслуживающий персонал от ожогов или снизить тепловыделения в помещении. В соответствии с санитарными нормами и требованиями СНиП 2.04.14-88 температура поверхности расположенных в помещении изолированных трубопроводов при температуре теплоносителя ниже 100°С не должна превышать 35°С, а при температуре теплоносителя 100°С и более не должна превышать 45°С.  
В обслуживаемой зоне на открытом воздухе температура поверхности изоляции не должна превышать 60°С.

 

1.2  теплоизоляция трубопроводов с целью предотвращения замерзания содержащейся в них жидкости

Тепловую изоляцию с  целью предотвращения замерзания жидкости при прекращении ее движения предусматривают для трубопроводов, расположенных на открытом воздухе. Как правило, это актуально для трубопроводов малого диаметра, имеющих малый запас аккумулированного тепла. Время, на которое тепловая изоляция может предохранить транспортируемую жидкость от замерзания при остановке её движения, зависит от температуры жидкости и окружающего воздуха, скорости ветра, внутреннего диаметра, толщины и материала стенки трубопровода, параметров транспортируемой жидкости. К параметрам, влияющим на длительность периода до начала замерзания, относятся: плотность, температура замерзания, удельная теплоемкость, скрытая теплота замерзания.

Чем больше скорость ветра  и ниже температура жидкости (холодной воды) и окружающего воздуха, меньше диаметр трубопровода, тем больше вероятность замерзания жидкости. Уменьшает вероятность замерзания холодной воды применение изолированных неметаллических трубопроводов.

1.3 ьеплоизоляция трубопроводов с целью предотвращения конденсации влаги на поверхности изоляции

Применение тепловой изоляции с целью предотвращения конденсации влаги из воздуха  на поверхности изоляции выполняют  для трубопроводов, расположенных  в помещении, содержащих вещества с  температурой ниже температуры окружающего  воздуха, в том числе холодную воду. На величину толщины теплоизоляционного слоя для предотвращения конденсации влаги из воздуха на поверхности теплоизоляционной конструкции влияют относительная влажность окружающего воздуха, температура воздуха в помещении и вид защитного покрытия. При использовании покрытия с высоким коэффициентом излучения (неметаллического) расчетная толщина изоляции существенно ниже.

1.4 теплоизоляция трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки

На сегодняшний день вопрос теплоизоляции трубопроводов водяных тепловых сетей двухтрубной подземной канальной прокладки, с ростом стоимости энергоносителей, вопрос энергосбережения стоит особенно остро.

 

 

 

 

 

 

 

 

 

2.виды и материалы теплоизоляции для трубопроводов

 

Универсального теплоизоляционного материала, который бы подходил для всех трубопроводов на сегодняшний день - нет. Для каждого отдельного проекта необходимо подбирать свой теплоизоляционный материал, который обеспечит необходимые задачи теплоизоляции трубопровода.

К основным требованиям, предъявляемым к теплоизоляционным  материалам и конструкциям, относят  следующие:

- теплотехническая  эффективность;

- эксплуатационная  надежность и долговечность;

- пожарная и  экологическая безопасность.

Основными показателями, характеризующими физико-технические и эксплуатационные свойства теплоизоляционных материалов, являются: плотность, теплопроводность, температуростойкость, сжимаемость и упругость (для мягких материалов), прочность на сжатие при 10 % деформации (для жестких и полужестких материалов), вибростойкость, формостабильность, горючесть, водостойкость и стойкость к воздействию химически агрессивных сред, содержание органических веществ и биостойкость[1].

Теплотехническая  эффективность конструкций промышленной тепловой изоляции определяется в первую очередь коэффициентом теплопроводности теплоизоляционного материала, который определяет требуемую толщину теплоизоляционного слоя, а следовательно, и нагрузки на изолируемый объект, конструктивные и монтажные характеристики конструкции. Расчетные значения коэффициента теплопроводности принимаются с учетом его зависимости от температуры, степени уплотнения теплоизоляционных материалов в конструкции, шовности конструкции, наличия крепежных деталей. При выборе теплоизоляционного материала учитывают: температуростойкость теплоизоляционных материалов, возможную линейную усадку, потери прочности и массы, степень выгорания связующего при нагреве, прочностные и деформационные характеристики изолируемого объекта, допустимые нагрузки на опоры и изолируемые поверхности и другие влияющие факторы.

Долговечность теплоизоляционных конструкций  зависит от их конструктивных особенностей и условий эксплуатации, включающих месторасположение изолируемого объекта, режим работы оборудования, степень  агрессивности окружающей среды, интенсивность механических воздействий. Срок службы теплоизоляционного материала и теплоизоляционной конструкции в целом в значительной степени определяется качеством защитного покрытия[6].

Требования  пожарной безопасности определяются нормами технологического проектирования конкретных отраслей промышленности с учетом положений СНиП 41-03-2003 «Тепловая изоляция оборудования и трубопроводов». Для таких отраслей промышленности, как газовая, нефтехимическая, химическая, производство минеральных удобрений, ведомственные нормы допускают применение только негорючих и трудногорючих материалов (группы НГ и Г1 при испытаниях по ГОСТ 30244-94) в составе теплоизоляционных конструкций. При выборе материалов учитываются не только показатели горючести теплоизоляционного слоя и защитного покрытия, но и поведение теплоизоляционной конструкции в условиях пожара в целом. Пожароопасность теплоизоляционных конструкций наряду с другими факторами зависит от температуростойкости защитного покрытия, его механической прочности в условиях огневого воздействия.

Санитарно-гигиенические  требования особенно важны при проектировании объектов с технологическими процессами, требующими высокой чистоты, например, в микробиологии, радиоэлектронике, фармацевтической промышленности. В этих условиях применяются материалы или конструкции, не допускающие загрязнения воздуха в помещениях.На сегодняшний день на Российском рынке представлено довольно много утеплителей для трубопроводов, они производятся в виде матов, трубок, сегментов, цилиндров и полуцилиндров, рулонная изоляция, в виде мастик и красок, в виде услуги по напылению теплоизоляции. Так же трубопроводы могут быть предизолированы, т. е. на рынке предлагается готовое решение пробрести трубу, на которой уже присутствует теплоизоляция и гидроизоляция (если она необходима)[2].

2.1 предизолированные трубопроводы:

На предизолированные  трубы в России действует Межгосударственный стандарт ГОСТ 30732-2001

"Трубы и  фасонные изделия стальные с  тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке. Технические условия" 

 


Рис. 2.1

Изделия предназначенные  для подземной бесканальной прокладки  тепловых сетей с расчетными параметрами  теплоносителя: рабочим давлением  до 1,6 МПа и температурой до 130°С (допускается  кратковременное повышение температуры до 150°С).

2.1.1 трубы в пенополиуретановой изоляции

Трубы в пенополиуретановой изоляции представляют собой конструкцию, собранную по схеме «труба в трубе». Изоляция труб проводится в заводских условиях, что обеспечивает высокое качество и надежность конечной продукции за счет соблюдения параметров технологического процесса и аппаратных методов контроля качества. При выполнении теплоизоляции жидкие компоненты пенополиуретана, впрыскиваются под давлением в пространство между стальной внутренней трубой и полиэтиленовой наружной изоляцией. Большое значение имеет точное соблюдение пропорций компонентов ППУ. Компоненты застывают в межтрубном пространстве, принимая форму защитной ППУ теплоизоляции. Адгезия, т.е., сцепление разнородных тел в местах контакта поверхностей, обеспечивается предварительной обработкой стальной трубы дробеструйной установкой. Это позволяет снять с поверхности стальной трубы окалину и ржавчину. После этого на трубу наносится специальное покрытие. Адгезию с полиэтиленовой оболочкой обеспечивает коронарный электрический разряд на материале. Применение защитной оболочки из полиэтилена  производится в случае подземной прокладки трассы и  использование защитной оболочки из оцинкованной стали  для надземной прокладки трассы. Так же изготавливается  весь спектр фасонных изделий и запорной арматуры в ППУ. Все изделия производятся в заводских условиях высококвалифицированными специалистами на современном оборудовании

Преимущества: В них сочетаются эластичность и, в то же время, твердость, которые дают широкий диапазон использования; Низкий коэффициент теплопроводности (0,027 ват/мк); Долговечность и надежность службы  25-30 лет; Высокая технологичность на современном оборудовании; устойчивость против коррозии; Биологически нейтральна, химически стойка к воздействию слабых кислот и щелочей, морской воды и действию микроорганизмов, плесени, гниению; Низкое водопоглощение;  За счет наличия системы ОДК, контроль целостности трубы во время эксплуатации осуществляется без проведения земляных работ;  Трубы в ППУ изоляции могут эксплуатироваться при температуре окружающей среды от -80°C до +130°C;  Минимальная глубина при бесканальном способе прокладки принимается в пределах 0,5 - 0,7м от поверхности грунта. Максимальное залегание тепломагистрали  рассчитывается, исходя из условия соблюдения прочности конструкции. Обычно оно не превышает 3 м. Имеется возможность вариации толщиной слоя изоляции для учета требований различных климатических условий, это использование более толстого слоя изоляции для  северных районов страны. Возможность бестраншейной прокладки.

Недостатки:Исходя из того же национального доклада «Теплоснабжение  Российской Федерации. Пути выхода из кризиса.»:,«Качество ППУ-труб большинства предприятий-изготовителей ниже всякой критики, качество строительства еще ниже, система контроля влажности изоляции (единственный источник правдивой информации о качестве строительства и эксплуатации) почти не применяется. В итоге трубопроводы в ППУ, эксплуатируемые в других странах по 30 - 50 лет, у нас часто начинают выходить из строя на 2 - 4-й год эксплуатации.» Также к недостаткам следует отнести: сложность выполнения заливки стыков и использования для этого специального оборудования; имеют место серьезные нарушения целостности изоляции при погрузочно-разгрузочных работах, на местах хранения и монтажа трубопроводов,   в связи с низкой квалификацией персонала, что приводит  к необходимости замены труб т.к..требуется заводской ремонт, если трубы не закопают с нарушенной изоляцией; требуется специальная подготовка поверхности траншеи перед укладкой труб ППУ для устранения возможности разрушения изоляции; При хранении и транспортировки необходима  защита труб в ПЭ трубе и особенно краев изоляции от ультрофиалетового и механического воздействия; Невозможен контроль качества непосредственно изоляции; Высокие затраты на организацию (50-60 млн.руб.) и ведение производства в заводских условиях (высокий уровень амортизации сложного оборудования и высокооплачиваемые  квалифицированные кадры); низкая вандалоустойчивость и пожаростойкость

Информация о работе Теплоизоляция трубопроводов