Вяжущие материалы

Автор работы: Пользователь скрыл имя, 22 Декабря 2013 в 09:14, реферат

Краткое описание

Вяжущие вещества по составу делятся на
1. неорганические (известь, цемент, строительный гипс, магнезиальный цемент, жидкое стекло и др.), которые затворяют водой (реже водными растворами солей). Включают: вяжущие воздушные, вяжущие гидравлические, вяжущие автоклавного твердения.
2. органические (битумы, дёгти, животный клей, полимеры), которые переводят в рабочее состояние нагреванием, расплавлением или растворением в органических жидкостях.

Прикрепленные файлы: 1 файл

реферат текст.doc

— 199.00 Кб (Скачать документ)

ВВЕДЕНИЕ

 

Строительные материалы  составляют более 50 % от общей сметной  стоимости строительства. Поэтому  при возведении здании и сооружений необходимо учитывать свойства строительных материалов, их экономическую целесообразность и техническую обоснованность использования  
Материалы, применяемые в строительном производстве, подразделяются на отдельные группы по своему происхождению, строению, составу, особым свойствам, назначению и области применения.  
Строительные материалы могут быть природные — естественные (лесные, каменные плотные, пористые, рыхлые, горные породы, гравий, песок, глина и т.д.) и искусственные (вяжущие материалы — цемент, известь, искусственные камни — кирпич, блоки, растворы, бетоны, керамические изделия, металлы, тепло и гидроизоляционные материалы, краски, лаки и многие другие материалы на полимерной основе).  
На строительные материалы, изготовляемые предприятиями, существуют Государственные стандарты — ГОСТы и технические условия — ТУ. В стандартах приведены основные сведения о строительном материале, дано его определение, указаны сырье, области применения, классификация, деление на сорта и марки, методы испытания, условия транспортирования и хранения.  
Номенклатура и технические требования к строительным материалам и деталям, их качеству, указания по выбору и применению в зависимости от условий эксплуатации возводимого здания или сооружения изложены в «Строительных нормах и правилах» СНиП-ах  
Для правильного применения того или иного материала в строительстве необходимо знать физические, механические и другие свойства Показатели свойств строительных материалов устанавливают лабораторными испытаниями образцов, отобранных в установленном порядке. 

Вяжущие материалы  — вещества, способные затвердевать в результате физико-химических процессов. Переходя из тестообразного в камневидное состояние, вяжущее вещество скрепляет между собой камни либо зёрна песка, гравия, щебня. Это свойство вяжущих используется для изготовления: бетонов, силикатного кирпича, асбоцементных и других необожжённых искусственных материалов; строительных растворов — кладочных, штукатурных и специальных.

Вяжущие вещества по составу делятся  на

1. неорганические (известь, цемент, строительный гипс, магнезиальный цемент, жидкое стекло и др.), которые затворяют водой (реже водными растворами солей). Включают: вяжущие воздушные, вяжущие гидравлические, вяжущие автоклавного твердения.

2. органические (битумы, дёгти, животный клей, полимеры), которые переводят в рабочее состояние нагреванием, расплавлением или растворением в органических жидкостях.

 

ГЛАВА 1. ТЕХНАЛОГИЯ ИЗГОТОВЛЕНИЯ ПОРТЛАНДЦЕМЕНТА

 

Портландцемент получают тонким измельчением клинкера и гипса. Клинкер — продукт равномерного обжига до спекания однородной сырьевой смеси, состоящей из известняка и глины определённого состава, обеспечивающего преобладание силикатов кальция (3СаО∙SiOи 2СаО∙SiO70-80 %).

Самые распространённые методы производства портландцемента так называемые «сухой» и «мокрый». Всё зависит  от того, каким способом смешивается  сырьевая смесь — в виде водных растворов или в виде сухих смесей.

При измельчении клинкера вводят добавки: 1,5…3,5 % гипса СaSO4∙2H2O (в перерасчёте на ангидрид серной кислоты SO3) для регулирования сроков схватывания, до 15 % активных минеральных добавок — для улучшения некоторых свойств и снижения стоимости цемента.

Сырьём для производства портландцемента  служат смеси, состоящие из 75…78 % известняка (мела, ракушечника, известнякового туфа, мрамора) и 22…25 % глин (глинистых сланцев, суглинков), либо известняковые мергели, использование которых упрощает технологию. Для получения требуемого химического состава сырья используют корректирующие добавки: пиритные огарки, колошниковую пыль, бокситы, пески, опоки, трепелы.

При мокром способе производства уменьшается  расход электроэнергии на измельчение  сырьевых материалов, облегчается транспортирование и перемешивание сырьевой смеси, выше гомогенность шлама и качество цемента, однако расход топлива на обжиг и сушку составляет на 30-40 % больше чем при сухом способе.

Обжиг сырьевой смеси проводится при  температуре 1 470°C в течение 2…4 часов в длинных вращающихся печах (3,6х127 м, 4×150 м и 4,5х170 м) с внутренними теплообменными устройствами, для упрощения синтеза необходимых минералов цементного клинкера. В обжигаемом материале происходят сложные физико-химические процессы. Вращающуюся печь мокрого способа условно можно поделить на зоны:

  • сушки (температура материала 100…200 °C — здесь происходит частичное испарение воды);
  • подогрева (200…650 °C — выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле: Al2O3∙2SiO2∙2H2O → Al2O3∙2SiO+ 2H2O; далее при температурах 600…1 000 °C происходит распад алюмосиликатов на оксиды и метапродукты.
  • декарбонизации (900…1 200 °C) происходит декарбонизация известнякового компонента: СаСО→ СаО + СО2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО∙ Al2O— сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С3А), протекающих ступенчато;
  • экзотермических реакций (1 200…1 350 °C) завершется процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С3А, С4АF (F — Fe2O3) и C2S (S — SiO2) — 3 из 4 основных минералов клинкера;
  • спекания (1 300→1 470→1 300 °C) частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С3S);
  • охлаждения (1 300…1 000 °C) температура понижается медленно. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла.

Узнать данный вид  цемента можно по внешнему виду — это зеленовато-серый порошок. Как и все цементы, если к нему добавить воду, он при высыхании принимает камнеобразное состояние и не имеет существенных отличий по своему составу и физико-химическим свойствам от обычного цемента.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ГЛАВА 2. РАЗНОВИДНОСТИ ПОРТЛАНЦЕМЕНТА

 

Для более полного  удовлетворения специфических требований отдельных видов строительства  промышленность выпускает особые виды портландцемента.

При получении портландцементов с заданными специальными свойствами используют следующие основные пути: 1) регулирование минерального состава и структуры цементного клинкера, оказывающих решающее влияние на строительно-технические свойства цемента; 2) регулирование тонкости помола и зернового состава цемента, влияющих на скорость твердения, прочность, тепловыделение и другие важнейшие свойства вяжущего; 3) изменение вещественного состава портландцемента введением в него активных минеральных и органических добавок, позволяющих направленно изменять свойства вяжущего, экономить клинкер и расход цемента в бетоне. 

Быстротвердеющий портландцемент (БТЦ) отличается от обычного более интенсивным набором прочности в первые 3 сут. В соответствии с требованиями   ГОСТ 10178—85 БТЦ М400 должен иметь через 3 сут твердения в нормальных условиях предел прочности при сжатии не менее 24,5 МПа, а БТЦ М500 — не менее 27,5 МПа. В дальнейшем рост прочности замедляется ,и к 28 сут прочность БТЦ такая же, как обычного портландцемента М400 и 500.

Быстрое твердение БТЦ  достигается повышенным содержанием  в клинкере активных минералов (содержание C3S+C3A составляет 60...65%) и более тонкого помола цемента  (удельная поверхность 3500...4000 см2/г).

При помоле БТЦ допускается  введение активных минеральных добавок  осадочного происхождения (не более 10 %) или доменных гранулированных шлаков (до 20 % от массы цемента). 

Разновидностью быстротвердеющего  цемента является особо быстротвердеющий портландцемент (ОБТЦ), который характеризуется не только большой скоростью твердения в начальный период, но и высокой маркой (М600...700). Его изготовляют тонким измельчением клинкера, содержащего C3S 65...68% и СзА не более 8 %, совместно с добавкой гипса, до удельной поверхности 4000...4500 см2/г и более. Введение минеральных добавок не допускается. 

Разработан также сверхбыстротвердеющий цемент (СБТЦ) специального минерального состава, который обеспечивает интенсивное нарастание прочности уже в первые сутки его твердения (через 6 ч — 10 МПа).

Интенсивность роста  прочности бетона на быстротвердеющих цементах возрастает в условиях тепловлажностной обработки изделий при температуре 70...80°С. При этом через 4...6 ч удается получить изделия с прочностью, соответствующей 70...80 % 28-суточной.

Быстротвердеющие  портландцементы целесообразно применять при массовом производстве сборных железобетонных изделий, а также при зимних бетонных работах. Их применение дает возможность сократить расход цемента, длительность тепловлажностной обработки или даже отказаться от нее, тем самым увеличить оборот форм и сэкономить металл. Нельзя применять такие цементы для бетонов массивных конструкций и подвергающихся сульфоалюминатной коррозии. 

Сульфатостойкий портландцемент (СПЦ) отличается от обычного портландцемента не только более высокой стойкостью к сульфатной коррозии, но и пониженной экзотермией при твердении и повышенной морозостойкостью. Клинкер для изготовления СПЦ должен содержать не более 50 % QS, не выше 5 % С3А и не более 22 % C3A+C4AF. Сульфатостойкий портландцемент выпускают М400. Его целесообразно применять в тех случаях, когда одновременно требуется высокая стойкость против воздействия сульфатных вод и попеременного замораживания и оттаивания, высыхания и увлажнения в пресной или слабоминерализованной воде. 

Белый и цветные портландцементы — это декоративные вяжущие материалы, использование которых в строительстве позволяет улучшить эстетический вид зданий и сооружений при меньших затратах, чем с другими отделочными материалами.

Белый портландцемент получают путем измельчения белого клинкера совместно с добавками гипса  и белого диатомита (до 6 %). Чтобы  получить белый клинкер, необходимо для приготовления сырьевой смеси применять карбонатные породы и глины с ничтожно малым содержанием оксидов железа (до 0,4...0,5 %) и марганца (до 0,005...0,15 %). Для повышения белизны клинкера его подвергают отбеливанию, сущность которого заключается в восстановлении присутствующего в клинкере Fe2C>3 до Fe3O4, обладающей малой красящей способностью.

Основным показателем  качества белого цемента как декоративного  материала является степень его  белизны. По степени белизны белый портландцемент разделяют на три сорта (первый, второй и третий), а по прочности при сжатии — на М400 и 500.

Цветные цементы  изготовляют путем совместного  помола белого клинкера и свето- и  щелочестойких пигментов или  непосредственно из цветного цементного клинкера. Цветные клинкеры, по предложению П. И. Боже-нова, получают, вводя в сырьевые смеси небольшое количество (0,05... 1 %) оксидов некоторых металлов (кобальта— коричневый цвет, хрома — желто-зеленый, марганца — голубой и бархатно-черный и др.). 

Портландцементы с органическими поверхностно-активными добавкамиполучают путем совместного помола портландцементного клинкера, гипса и небольшого количества (0,1...0,3 % от массы цемента) добавок поверхностно-активных веществ (ПАВ). В соответствии с ГОСТ 10178—85 допускается по согласованию с потребителем выпускать не только портландцемент, но все цементы с поверхностно-активными добавками, не выделяя их в особый класс. Основное назначение добавок   ПАВ (см. гл. б) сводится к повышению пластичности цементного теста, растворных и бетонных смесей при том же содержании в них воды, либо к снижению водопотребно-сти смеси и расхода цемента при сохранении заданной подвижности и проектной прочности бетона. Вместе с тем ПАВ оказывают положительное влияние на формирование структуры цементного камня и способствуют повышению морозостойкости, водонепроницаемости и других свойств бетона, а также повышают производительность мельниц (на 10...15 %) при одновременном снижении расхода электроэнергии.

Поверхностно-активные вещества в зависимости от их влияния на свойства цементов и цементного камня подразделяют на гидрофильно-пластифицирующие, повышающие смачиваемость цементного порошка . водой, и гидрофобно-пластифицирующие, понижающие смачиваемость. В соответствии с этим портландцемента с гидрофильными добавками называют пластифицированными, а с гидрофобными добавками — гидрофобными. 

Пластифицированный портландцемент получают при помоле клинкера с добавкой гидрофильно-пластифицирующих веществ (0,15...0,25 % массы цемента). В качестве такой добавки используют лигносульфонат технический (ЛСТ), который получают, как отход при сульфитной варке целлюлозы. ЛСТ состоит в основном из лигносульфонатов кальция.

Адсорбируясь на поверхности зерен  цемента, лигносульфонат кальция улучшает их смачивание водой. Образующиеся адсорбционно-гидратные слои воды обеспечивают гидродинамическую смазку зерен, уменьшая трение между ними, и одновременно препятствуют их слипанию в хлопья (флокулы), благодаря чему повышается пластичность цементного теста, а следовательно, и бетонной смеси и их устойчивость к расслоению. Другие свойства пластифицированного портландцемента (сроки схватывания, скорость твердения, прочность) примерно те же, что и у обычных портландцементов. Применение пластифицированного портландцемента дает возможность снизить трудоемкость укладки бетонной смеси, уменьшить расход цемента или (при том же расходе цемента и равной подвижности смеси) снизить водоцементное отношение и тем самым увеличить плотность, прочность, морозостойкость и водонепроницаемость бетона. Этот цемент широко используют в дорожном, аэродромном и гидротехническом строительстве. 

Информация о работе Вяжущие материалы