Утилизация и вторичная переработка полимерных материалов

Автор работы: Пользователь скрыл имя, 02 Июля 2012 в 13:22, курсовая работа

Краткое описание

Из всех выпускаемых пластиков 41 % используется в упаковке, из этого количества 47 % расходуется на упаковку пищевых продуктов. Удобство и безопасность, низкая цена и высокая эстетика являются определяющими условиями ускоренного роста использования пластических масс при изготовлении упаковки. Упаковка из синтетических полимеров, составляющая 40 % бытового мусора, практически "вечна" – она не подвергается разложению. Поэтому использование пластмассовой упаковки сопряжено с образованием отходов в размере 40…50 кг/год в расчете на одного человека.

Прикрепленные файлы: 1 файл

Утилизация и вторичная переработка полимерных материалов.doc

— 192.00 Кб (Скачать документ)

Блочный ПС необходимо перед повторной переработкой совмещать с ударопрочным ПС (в соотношении 70:30), модифицировать другими способами или подвергать вторичной переработке его сополимера с акрилонитрилом, метилметакрилатом (МС) или тройные сополимеры с МС и акрилонитрилом (МСН). Сополимеры МС и МСН отличаются более высокой стойкостью к атмосферному старению (по сравнению с ударопрочными композициями), что имеет большое значение при последующей переработке. Вторичный ПС можно добавлять к ПЭ.

Для превращения отходов полистирольных пленок во вторичное полимерное сырье их подвергают агломерированию в роторных агломераторах. Низкое значение ударной вязкости ПС обусловливает быстрое измельчение (по сравнению с другими термопластами). Однако высокая адгезионная способность ПС приводит, во-первых, к слипанию частиц материала и образованию крупных агрегатов до того (80 °С), как материал становится пластичным (130 °С),и, во-вторых, к прилипанию материала к перерабатывающему оборудованию. Это значительно затрудняет агломерирование ПС по сравнению с ПЭ, ПП и ПВХ.

Отходы ППС можно растворять в стироле, а затем полимеризовать в смеси, содержащей измельченный каучук и другие добавки. Полученные таким способом сополимеры характеризуются достаточно высокой ударной прочностью.

В настоящее время перед перерабатывающей промышленностью стоит проблема переработки смешанных отходов пластмасс. Технология переработки смешанных отходов включает сортировку, помол, промывку, сушку и гомогенизацию. Полученный из смешанных отходов вторичный ПС обладает высокими физико-механическими показателями, его можно в расплавленном состоянии добавлять в асфальт и битум. При этом снижается их стоимость, и прочностные характеристики возрастают примерно на 20 %.

Для повышения качества вторичного полистирольного сырья проводят его модификацию. Для этого необходимы исследования его свойств в процессе термостарения и эксплуатации. Старение ПС пластиков имеет свою специфику, которая наглядно проявляется особенно для ударопрочных материалов, которые помимо ПС содержат каучуки.

При термообработке материалов из ПС (при 100…200 °С) его окисление идет через образование гидропероксидных групп, концентрация которых в начальной стадии окисления быстро растет, с последующим образованием карбонильных и гидроксильных групп.

Гидропероксидные группы инициируют процессы фотоокисления, протекающие при эксплуатации изделий из ПС в условиях воздействия солнечной радиации. Фотодеструкция инициируется также ненасыщенными группами, содержащимися в каучуке. Следствием комбинированного влияния гидропе-роксидных и ненасыщенных групп на ранних стадиях окисления и карбонильных групп на более поздних стадиях является меньшая стойкость к фотоокислительной деструкции изделий из ПС по сравнению с ПО. Наличие ненасыщенных связей в каучуковой составляющей УПС при его нагревании приводит к автоускорению процесса деструкции.

При фотостарении ПС, модифицированного каучуком, разрыв цепи преобладает над образованием поперечных связей, особенно при большом содержании двойных связей, что оказывает значительное влияние на морфологию полимера, его физико-механические и реологические свойства.

Все эти факторы необходимо учитывать при повторной переработке изделий из ПС и УПС.

ПЕРЕРАБОТКА ОТХОДОВ ПОЛИАМИДОВ

Значительное место среди твердых полимерных отходов занимают отходы полиамидов образующиеся в основном при производстве и переработке в изделия волокон (капрон и амид), а также вышедшие из употребления изделия. Количество отходов при производстве и переработке волокна достигает 15 % (из них при производстве – 11…13 %). Так как ПА дорогостоящий материал, обладающий рядом ценных химических и физико-механических свойств рациональное использование его отходов приобретает особую важность.

Многообразие видов вторичного ПА требует создания специальных методов переработки и в то же время открывает широкие возможности для их выбора.

Наиболее стабильными показателями обладают отходы ПА-6,6, что является предпосылкой создания универсальных методов их переработки. Ряд отходов (обрезиненный корд, обрезь, изношенные чулочно-носочные изделия) содержит неполиамидные составляющие и требует специального подхода при переработке. Изношенные изделия загрязнены, причем количество и состав загрязнений определяется условиями эксплуатации изделий, организацией их сбора, хранения и транспортирования.

Основными направлениями переработки и использования отходов ПА можно назвать измельчение, термоформование из расплава, деполимеризацию, переосаждение из раствора, различные методы модификации и текстильную обработку с получением материалов волокнистой структуры. Возможность, целесообразность и эффективность применения тех или иных отходов обусловлены, в первую очередь, их физико-химическими свойствами.

Большое значение имеет молекулярная масса отходов, которая влияет на прочность регенерированных материалов и изделий, а также на технологические свойства вторичного ПА. Значительное влияние на прочность, термостабильность и условия переработки оказывает содержание низкомолекулярных соединений в ПА-6. Наиболее термостабильным в условиях переработки является ПА-6,6.

Для выбора методов и режимов переработки, а также направлений использования отходов важным является изучение термического поведения вторичного ПА. При этом значительную роль могут играть структурно-химические особенности материала и его предыстория.

Методы переработки отходов ПА

Существующие способы переработки отходов ПА можно отнести к двум основным группам: механические, не связанные с химическими превращениями, и физико-химические. Механические способы включают измельчение и различные приемы и методы, использующиеся в текстильной промышленности для получения изделий с волокнистой структурой.

Механической переработке могут быть подвергнуты слитки, некондиционная лента, литьевые отходы, частично вытянутые и невытянутые волокна.

Измельчение является не только операцией, сопровождающей большинство технологических процессов, но и самостоятельным методом переработки отходов. Измельчение позволяет получить порошкообразные материалы и крошку для литья под давлением из слитков, ленты, щетины. Характерно, что при измельчении физико-химические свойства исходного сырья практически не изменяются. Для получения порошкообразных продуктов применяют, в частности, процессы криогенного измельчения.

Отходы волокон и щетины используют для производства рыболовной лесы, мочалок, сумочек и др., однако при этом требуются значительные затраты ручного труда.

Из механических методов переработки отходов наиболее перспективными, получившими широкое распространение следует считать производство нетканых материалов, напольных покрытий и штапельных тканей. Особую ценность для этих целей представляют отходы полиамидных волокон, которые легко перерабатываются и окрашиваются.

Физико-химические методы переработки отходов ПА могут быть классифицированы следующим образом:

  1. деполимеризация отходов с целью получения мономеров, пригодных для производства волокна и олигомеров с последующим их использованием в производстве клеев, лаков и других продуктов;
  2. повторное плавление отходов для получения гранулята, агломерата и изделий экструзией и литьем под давлением;
  3. переосаждение из растворов с получением порошков для нанесения покрытий;
  4. получение композиционных материалов;
  5. химическая модификация для производства материалов с новыми свойствами (получение лаков, клеев и т.д.).

Деполимеризация широко применяется в промышленности для получения высококачественных мономеров из незагрязненных технологических отходов.

Деполимеризацию проводят в присутствии катализаторов, которыми могут быть нейтральные, основные или кислые соединения.

Широкое распространение в нашей стране и за рубежом получил метод повторного плавления отходов ПА, которое проводят в основном в вертикальных аппаратах в течение 2–3 ч и в экструзионных установках. При длительном термическом воздействии удельная вязкость раствора ПА-6 в серной кислоте снижается на 0,4…0,7 %, а содержание низкомолекулярных соединений возрастает с 1,5 до 5–6 %. Плавление в среде перегретого пара, увлажнение и плавление в вакууме улучшают свойства регенерированного полимера, однако не решают проблемы получения достаточно высокомолекулярных продуктов.

В процессе переработки экструзией ПА окисляется значительно меньше, чем при длительном плавлении, что способствует сохранению высоких физико-механических показателей материала. Повышение влагосодержания исходного сырья (для снижения степени окисления) приводит к некоторой деструкции ПА.

Получение порошков из отходов ПА путем переосаждения из растворов представляет собой способ очистки полимеров, получения их в виде, удобном для дальнейшей переработки. Порошки могут применяться, например, для чистки посуды, как компонент косметических средств и др.

Широко распространенным методов регулирования механических свойств ПА является наполнение их волокнистыми материалами (стекловолокном, асбестовым волокном и т.п.).

Примером высокоэффективного использования отходов ПА является создание на их основе материала АТМ-2, обладающего высокими прочностью, износостойкостью, стабильностью размеров.

Перспективным направлением улучшения физико-механических и эксплуатационных свойств изделий из вторичного ПКА является физическое модифицирование формованных деталей путем их объемно-поверхностной обработки. Объемно-поверхностная обработка образцов из вторичного ПКА, наполненного каолином и пластифицированного сланцевым мягчителем в нагретом глицерине приводит к росту ударной вязкости на 18 %, разрушающего напряжения при изгибе на 42,5 %, что может быть объяснено формованием более совершенной структуры материала и снятием остаточных напряжений.

Технологические процессы повторной переработки отходов ПА

Основными процессами, используемыми для регенерации вторичного полимерного сырья из отходов ПА, являются:

  1. регенерация ПА путем экструзии изношенных капроновых сетематериалов и технологических отходов с получением гранулированных продуктов, пригодных для переработки в изделия методом литья под давлением;
  2. регенерация ПА из изношенных изделий и технологических отходов капрона, содержащих волокнистые примеси (не полиамиды), путем растворения, фильтрации раствора и последующего осаждения ПА в виде порошкообразного продукта.

Технологические процессы переработки изношенных изделий отличаются от переработки технологических отходов наличием стадии предварительной подготовки, включающей разборку сырья, его отмывку, промывку, отжим и сушку вторичного сырья. Предварительно подготовленные изношенные изделия и технологические отходы поступают на измельчение, после чего направляются в экструдер для грануляции.

Вторичное волокнистое полиамидное сырье, содержащее неполиамидные материалы, обрабатывают в реакторе при комнатной температуре водным раствором соляной кислоты, фильтруют для удаления неполиамидных включений. Порошкообразный полиамид осаждают водным раствором метанола. Осажденный продукт измельчают и полученный порошок рассеивают.

В настоящее время в нашей стране технологические отходы, образующиеся в производстве капронового волокна достаточно эффективно используются для производства нетканых материалов, напольных покрытий и гранулята для литья и экструзии. Основной причиной недостаточного использования вышедших из строя изделий из ПА из компактных источников является отсутствие высокоэффективного оборудования для их первичной обработки и переработки.

Разработка и промышленное внедрение процессов переработки изношенных изделий из капронового волокна (чулочно-носочных, сетеснастных материалов и др.) во вторичные материалы позволит достичь экономии значительного количества исходного сырья и направить его в наиболее эффективные области применения.

ВТОРИЧНАЯ ПЕРЕРАБОТКА ОТХОДОВ ПОЛИЭТИЛЕНТЕРЕФТАЛАТА

Переработка лавсановых волокон и изношенных изделий из ПЭТФ аналогична вторичной переработке полиамидных отходов, поэтому в данном разделе рассмотрим вторичную переработку ПЭТФ бутылок.

За более чем 10 лет массового потребления в России напитков в упаковке из ПЭТФ на полигонах твердых бытовых отходов накопилось по некоторым оценкам более 2 млн. т использованной пластиковой тары, являющейся ценным химическим сырьем.

Взрывной рост производства бутылочных преформ, повышение мировых цен на нефть и, соответственно, на первичный ПЭТФ, повлияли на активное формирование в России в 2000 г. рынка по переработке использованных ПЭТФ бутылок.

Существует несколько методов переработки использованных бутылок. Одной из интересных методик является глубокая химическая переработка вторичного ПЭТФ с получением диметилтерефталата в процессе метанолиза или терефталевой кислоты и этиленгликоля в ряде гидролитических процессов. Однако такие способы переработки имеют существенный недостаток – дороговизна процесса деполимеризации. Поэтому в настоящее время чаще применяются довольно известные и распространенные механохимические способы переработки, в процессе которых конечные изделия формируются из расплава полимера. Разработан значительный ассортиментный ряд изделий, получаемых из вторичного бутылочного полиэтилентерефталата. Основным крупнотоннажным производством является получение лавсановых волокон (в основном штапельных), производство синтепонов и нетканых материалов. Большой сегмент рынка занимает экструзия листов для термоформования на экструдерах с листовальными головками, и, наконец, наиболее перспективным способом переработки повсеместно признано получение гранулята, пригодного для контакта с пищевыми продуктами, т.е. получение материала для повторной отливки преформ.

Информация о работе Утилизация и вторичная переработка полимерных материалов