Статистические методы исследования

Автор работы: Пользователь скрыл имя, 13 Ноября 2013 в 12:35, курсовая работа

Краткое описание

В районах (городах) - управления (отделы) государственной статистики. Кроме государственной существует еще ведомственная статистика (на предприятиях, ведомствах, министерствах). Она обеспечивает внутренние потребности в статистической информации. Цель данной работы – рассмотреть статистические методы исследования.

Содержание

Введение
1. Методы статистического исследования.
1.1. Метод статистического наблюдения
1.2. Сводка и группировка материалов статистического наблюдения
1.3. Абсолютные и относительные статистические величины
1.4. Вариационные ряды
1.5. Выборочный метод
1.6. Корреляционный и регрессионный анализ
1.7. Ряды динамики
1.8. Статистические индексы
Заключение
Список использованной литературы

Прикрепленные файлы: 1 файл

Статистические методы исследования.doc

— 136.50 Кб (Скачать документ)

В результате сопоставления  одноименных абсолютных величин получаются отвлеченные неименованные относительные величины, показывающие во сколько раз данная величина больше или меньше базисной. В этом случае базисная величина принимается за единицу (в результате получается коэффициент).

Кроме коэффициента широко распространенной формой выражения относительных величин являются проценты (%). В этом случае базисная величина принимается за 100 единиц.

Относительные величины могут выражаться в промилле (‰), в продецимилле  (0/000). В этих случаях база сравнения принимается соответственно за 1 000 и за 10 000. В отдельных случаях база сравнения может быть принята и за 100 000.

Относительные величины могут быть числами именованными. Ее наименование представляет собой  сочетание наименований сравниваемого  и базисного показателей. Например, плотность населения чел/кв. км  (сколько человек приходится на 1 квадратный километр).

Виды относительных  величин

Виды относительных  величин подразделяются в зависимости  от их содержания. Это относительные  величины: планового задания, выполнения плана, динамики, структуры, координации, интенсивности и уровня экономического развития, сравнения.

Относительная величина планового задания представляет собой отношение величины показателя, устанавливаемой на планируемый период к величине его, достигнутой к планируемому периоду.

Относительной величиной выполнения плана называется величина, выражающая соотношение между фактическим и плановым уровнем показателя.

Относительная величина динамики представляет собой отношение уровня показателя за данный период к уровню этого же показателя  в прошлом.

Три вышеперечисленные  относительные величины связаны  между собой, а именно: относительная  величина динамики равна произведению относительных величин планового  задания и выполнения плана.

Относительная величина структуры представляет собой отношение размеров части к целому. Она характеризует структуру, состав той или иной совокупности.

Эти же величины в процентах  называют удельным весом.

Относительной величиной координации называют соотношение частей целого между собой. В результате получают, во сколько раз данная часть больше базисной. Или сколько процентов от нее составляет или сколько единиц данной структурной части приходится  на 1 единицу (100 или 1000 и т.д. единиц) базисной структурной части.

Относительная величина интенсивности характеризует развитие изучаемого явления или процесса в другой среде. Это отношение двух взаимосвязанных явлений, но разных. Оно может быть выражено и в процентах,  и в промилле, и продецемилле, и именованной. Разновидностью относительной величины интенсивности является показатель уровня экономического развития, характеризующий производство продукции на душу населения.

Относительная величина сравнения представляет собой соотношение одноименных абсолютных показателей по разным объектам (предприятиям, районам, областям, странам и т.д.). Он может быть выражен как в коэффициентах, так и в процентах.

Средние величины их сущность и виды

Статистика, как известно, изучает массовые социально-экономические  явления. Каждое из этих явлений может иметь различное количественное выражение одного и того же признака. Например, заработная плата одной и той же профессии рабочих или цены на рынке на один и тот же товар и т.д.

Для изучения какой-либо совокупности по варьирующим (количественно изменяющимся)  признакам статистика использует средние величины.

Средняя величина - это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку.

Важнейшее свойство средней  величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом.

Средние величины связаны  с законом больших чисел. Суть этой связи заключается в том, что при осреднении случайные  отклонения индивидуальных величин  в силу действия закона больших чисел взаимопогашаются и в средней выявляется основная  тенденция развития, необходимость, закономерность однако, для этого среднюю необходимо вычислять на основе обобщения массы фактов.

Средние величины позволяют  сравнивать показатели, относящиеся  к совокупностям с различной численностью единиц.

Важнейшим условием научного использования средних величин  в статистическом анализе общественных явлений является однородность совокупности, для которой исчисляется средняя. Одинаковая по форме и технике вычисления  средняя в одних условиях  (для неоднородной совокупности) фиктивная, а в других (для однородной совокупности) соответствует действительности. Качественная однородность совокупности определяется на основе всестороннего теоретического анализа сущности явления. Так, например, при исчислении средней урожайности требуется, чтобы исходные данные относились к одной и той же культуре (средняя урожайность пшеницы) или группе культур (средняя урожайность зерновых). Нельзя вычислять среднюю для разнородных культур.

Математические приемы, используемые в различных разделах статистики, непосредственно связаны  с вычислением средних величин.

Средние в общественных явлениях обладают относительным постоянством, т.е. в течение какого-то определенного  промежутка времени однотипные явления характеризуются примерно одинаковыми средними.

Средине величины очень  тесно связаны с методом группировок, т.к. для характеристики явлений  необходимо исчислять не только общие (для всего явления) средние, но и  групповые (для типических групп этого явления по изучаемому признаку).

Виды средних величин

 

От того, в каком  виде представлены исходные данные для  расчета средней величины, зависит  по какой формуле она будет  определятся. Рассмотрим наиболее часто  применяемые в статистике виды средних величин:

  • среднюю арифметическую;
  • среднюю гармоническую;
  • среднюю геометрическую;
  • среднюю квадратическую.

1.4. Вариационные ряды

 

Сущность и  причины вариации

 

Информация о средних  уровнях исследуемых показателей  обычно бывает недостаточной для  глубокого анализа изучаемого процесса или явления.

Необходимо учитывать  и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. Каждое индивидуальное значение признака складывается под совместным воздействием многих факторов. Социально-экономические явления, как правило, обладают большой вариацией. Причины этой вариации содержатся в сущности явления.

Показатели вариации определяют как группируются значения признака вокруг средней величины. Они используются для характеристики упорядоченных статистических совокупностей: группировок, классификаций, рядов распределения. В наибольшей степени вариации подвержены курсы акций, объёмы спроса и предложения, процентные ставки в разные периоды и в разных местах.

Абсолютные  и относительные показатели вариации

 

По смыслу определения вариация измеряется степенью колеблемости вариантов  признака от уровня их средней величины, т.е. как разность х-х. На использовании отклонений от средней построено большинство показателей применяемых в статистике для измерения вариаций значений признака в совокупности.


Самым простейшим абсолютным показателем вариации является размах вариации R=xmax-xmin . Размах вариации выражается в тех же единицах измерения, что и Х. Он зависит только от двух крайних значений признака и, поэтому, недостаточно характеризует колеблемость признака.

Абсолютные показатели вариации зависят от единиц измерения  признака и затрудняют сравнение двух или нескольких различных вариационных рядов.

Относительные показатели вариации вычисляются как отношение различных абсолютных показателей вариации к средней арифметической. Наиболее распространённым из них является коэффициент вариации.

Коэффициент вариации характеризует  колеблемость признака внутри средней. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент  вариации не превышает 33%, то совокупность по рассматриваемому признаку можно  считать однородной.

 

1.5. Выборочный метод

 

Сущность выборочного  метода заключается в том, чтобы по свойствам части (выборки) судить о численных характеристиках целого (генеральной совокупности), по отдельным группам вариантов их общей совокупности, которая иногда мыслится как совокупность неограниченно большого объема. Основу выборочного метода составляет та внутренняя связь, которая существует в популяциях между единичным и общим, частью и целым.

Выборочный метод имеет  очевидные преимущества перед сплошным изучением генеральной совокупности, так как сокращает объем работы (за счет уменьшения числа наблюдении) позволяет экономить силы и средства, получать информацию о таких совокупностях, полное обследование которых практически невозможно или нецелесообразно.

Опыт показал, что правильно произведенная выборка довольно хорошо представляет или репрезентирует (от лат. represento-представляю) структуру и состояние генеральной совокупности. Однако полного совпадения выборочных данных с данными обработки генеральной совокупности, как правило, не бывает. В этом и заключается недостаток выборочного метода, на фоне которого видны преимущества сплошного описания генеральной совокупности.

В виду неполного отображения  выборкой статистических характеристик (параметров) генеральной совокупности перед исследователем возникает важная задача: во-первых, учитывать и соблюдать те условия, при которых выборка наилучшим образом репрезентирует генеральную совокупность, а во-вторых, в каждом конкретном случае устанавливать, с какой уверенностью можно перенести результаты выборочного наблюдения на всю генеральную совокупность, из которой выборка взята.

Репрезентативность выборки  зависит от целого ряда условий и  прежде всего от того, как она  осуществляется, или планомерно (т. е. по заранее намеченной схеме), или путем непланомерного отбора вариант из генеральной совокупности. В любом случае выборка должна быть типичной и вполне объективной. Эти требования должны выполняться неукоснительно как наиболее существенные условия репрезентативности выборки. Прежде чем обрабатывать выборочный материал, его нужно тщательно проверить и освободить выборку от всего лишнего, что нарушает условия репрезентативности. В то же время при образовании выборки нельзя поступать по произволу, включать в ее состав только те варианты, которые кажутся типичными, а все остальные браковать. Доброкачественная выборка должна быть объективной, т. е. производиться без предвзятых побуждений, при исключении субъективных влияний на ее состав. Выполнению этого условия репрезентативности отвечает принцип рендомизации (от англ. rendom-случай), или случайного отбора вариант из генеральной совокупности.

Этот принцип положен  в основу теории выборочного метода и должен соблюдаться во всех случаях  образования репрезентативной выборочной совокупности, не исключая и случаев планомерного или преднамеренного отбора.

Существуют различные  способы отбора. В зависимости  от способа отбора различают выборки  следующих типов:

- случайная выборка с возвратом;

- случайная выборка без возврата;

- механическая;

- типическая;

- серийная.

Рассмотрим образование  случайных выборок с возвратом  и без возврата. Если выборка производится из массы изделий (например, из ящика), то после тщательного перемешивания  следует брать объекты случайно, т. е. так, что бы они все имели одинаковую вероятность попасть в выборку. Часто для образования случайной выборки элементы генеральной совокупности предварительно номеруются, а каждый номер записывается на отдельной карточке. В результате получается пачка карточек, число которых совпадает с объемом генеральной совокупности. После тщательного перемешивания из этой пачки берут по одной карточке. Объект, имеющий одинаковый номер с карточкой считается попавшим в выборку. При этом возможны два принципиально различных способа образования выборочной совокупности.

Первый способ - вынутая карточка после фиксации ее номера возвращается в пачку, после чего карточки снова тщательно перемешиваются. Повторяя такие выборки по одной карточке, можно образовать выборочную совокупность любого объема. Выборочная совокупность, образованная по такой схеме, получила название случайной выборки с возвратом.

Второй способ - каждая вынутая карточка после ее записи обратно не возвращается. Повторяя по такой схеме выборки по одной карточке, можно получить выборочную совокупность любого заданного объема. Выборочную совокупность, образованную по данной схеме называют случайной выборкой без возврата. Случайная выборка без возврата образуется в том случае, если из тщательно перемешанной пачки сразу берут нужное число карточек.

Однако при большом  объеме генеральной совокупности описанный  выше способ образования случайной  выборки с возвратом и без  возврата оказывается очень трудоемким. В этом случае пользуются таблицами  случайных чисел, в которых числа  расположены в случайном порядке. Доля того, что бы отобрать, например, 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают подряд 50 случайных чисел; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами, если случайное число таблицы окажется больше объема генеральной совокупности, то такое число пропускают.

Информация о работе Статистические методы исследования