Микроконтроллер ATtiny2313 фирмы Atmel

Автор работы: Пользователь скрыл имя, 20 Апреля 2013 в 18:28, курсовая работа

Краткое описание

С начала 1970-х годов широко известно, что рост мощности микропроцессоров следует закону Мура, который утверждает, что число транзисторов на интегральной микросхеме удваивается каждые 18 месяцев. В конце 1990-х главным препятствием для разработки новых микропроцессоров стало тепловыделение (TDP). Некоторые авторы относят к микропроцессорам только устройства, реализованные строго на одной микросхеме. Такое определение расходится как с академическими источниками, так и с коммерческой практикой (например, варианты микропроцессоров Intel и AMD в корпусах типа SECC и подобных, такие как Pentium II, были реализованы на нескольких микросхемах).

Содержание

Введение

Закон Мура и первый МК

Микроконтроллер ATtiny2313 фирмы Atmel

Структура, основные характеристики и возможности

2.2 Особенности микросхемы ATtiny2313

3 Применение микроконтроллеров

4 Программирование контроллера

5 Схема программатора

6 Программа для прошивки

Прикрепленные файлы: 1 файл

диплом.docx

— 900.64 Кб (Скачать документ)

Содержание  :

 

Введение

 

  1. Закон Мура и первый МК

 

  1.  Микроконтроллер ATtiny2313 фирмы Atmel

 

    1. Структура, основные характеристики и возможности

 

  2.2 Особенности микросхемы ATtiny2313

 

  3 Применение микроконтроллеров

 

  4 Программирование контроллера

 

  5 Схема программатора

 

  6 Программа для прошивки

 

 

 

 

 

Введение

В микропроцессорной системе используются отдельная микросхема процессора, отдельные микросхемы памяти и отдельные порты ввода вывода. Стремительное развитие микропроцессорной техники требует всё большей и большей степени интеграции микросхем.

Именно поэтому были разработаны  микросхемы, которые объединяют в  себе сразу все элементы микропроцессорной  системы. Такие микропроцессоры  называются микроконтроллерами. В советское  время такие микросхемы называли «Однокристальные микро ЭВМ».

Для однокристальных микроконтроллеров  понятие «центральный процессор» обычно не употребляется. Так как процессор  – это все-таки отдельное устройство. Функции процессора в микроконтроллере заменяет арифметико-логическое устройство (АЛУ).

Кроме АЛУ, микроконтроллер  содержит в своём составе:

♦ тактовый генератор;

♦ память данных;

♦ память программ;

♦ порты ввода-вывода.

Все эти элементы соединены  между собой внутренними шинами данных и адреса. С внешним миром  микроконтроллер общается при помощи портов ввода-вывода. Любой микроконтроллер  всегда имеет один или несколько  портов. Кроме того, современные  микроконтроллеры всегда имеют встроенную систему прерываний, а также встроенные программируемые таймеры, компараторы, цифроаналоговые преобразователи  и многое другое.

Если речь идёт не о большом  компьютере, а о портативном устройстве управления, то в нём применяются  именно микроконтроллеры. Конечно, любая  реальная схема редко обходится  без простых логических микросхем, триггеров, счётчиков и тому подобного. Но основой всегда является микроконтроллер. Чистые микропроцессоры в настоящее  время применяются только в персональных компьютерах.

Микроконтро́ллер (англ. Micro Controller Unit, MCU) – микросхема, предназначенная для управления электронными устройствами. Микроконтроллер сочетает в себе функции процессора и периферийных устройств, может содержать ОЗУ и ПЗУ. По сути, это однокристальный компьютер, способный выполнять простые задачи. Большая часть выпускаемых в современном мире процессоров – микроконтроллеры.

МК – это компьютер, разместившийся в одной микросхеме. Отсюда и его основные привлекательные качества: малые габариты, потребление, цена; высокие производительность, надёжность и способность быть адаптированным для выполнения самых различных задач.

МК отличается от микропроцессора  тем, что помимо центрального процессора (ЦП) содержит память и многочисленные устройства ввода / вывода: аналого-цифровые преобразователи, последовательные и параллельные каналы передачи информации, таймеры реального времени, широтно-импульсные модуляторы (ШИМ), генераторы программируемых импульсов и т.д. По своей структуре и принципу функционирования МК, в сущности, не отличается от персонального компьютера. Поэтому слова микроконтроллер и микро-ЭВМ являются синонимами. Однако первый термин (от английского слова control – управлять) более распространён, поскольку отражает его основное назначение – использование в системах автоматического управления, встроенных в самые разные устройства: кредитные карточки, фотоаппараты, сотовые телефоны, музыкальные центры, телевизоры, видеомагнитофоны и видеокамеры, стиральные машины, микроволновые печи, системы охранной сигнализации, системы зажигания бензиновых двигателей, электроприводы локомотивов, ядерные реакторы и многое, многое другое. Встраиваемые системы управления стали настолько массовым явлением, что фактически сформировалась новая отрасль экономики, получившая название Embedded Systems (встраиваемые системы – англ.).

В настоящее время в  мире выпускаются тысячи разновидностей МК. Они поставляются в корпусах с числом выводов от 8 до 356, работают при температуре от –55 до +125 °C на частотах от 32 кГц до 200 МГц, способны функционировать при напряжении питания от 1.2 В, потребляя при этом ток, не превышающий единицы микроампер. Цена изделий также непрерывно снижается. Некоторые восьмиразрядные МК уже сегодня стоят не дороже 50 центов, что сопоставимо со стоимостью одной микросхемы «жёсткой логики». Все это привело к тому, что сегодня всё труднее найти область человеческой деятельности, где бы МК не нашли применения. И процесс их распространения имеет лавинообразный характер.

 Действительно, МК  стал событием мирового масштаба, вторгшимся практически во все  виды человеческой деятельности.

        Микропроце́ссор — процессор (устройство, отвечающее за выполнение арифметических, логических операций и операций управления, записанных в машинном коде), реализованный в виде одной микросхемы или комплекта из нескольких специализированных микросхем.

Первые микропроцессоры  появились в 1970-х годах и применялись  в электронных калькуляторах, в  них использовалась двоично-десятичная арифметика 4-битных слов. Вскоре их стали встраивать и в другие устройства, например терминалы, принтеры и различную автоматику. Доступные 8-битные микропроцессоры с 16-битной адресацией позволили в середине 1970-х годах создать первые бытовые микрокомпьютеры.

Дополнительные сведения: История вычислительной техники

Долгое время центральные  процессоры создавались из отдельных  микросхем малой и средней  интеграции, содержащих от нескольких единиц до нескольких сотен транзисторов. Разместив целый процессор на одном чипе сверxбольшой интеграции, удалось значительно снизить его стоимость. Несмотря на скромное начало, непрерывное увеличение сложности микропроцессоров привело к почти полному устареванию других форм компьютеров. В настоящее время один или несколько микропроцессоров используются в качестве вычислительного элемента во всём, от мельчайших встраиваемых систем и мобильных устройств до огромных мейнфреймов и суперкомпьютеров.

С начала 1970-х годов широко известно, что рост мощности микропроцессоров следует закону Мура, который утверждает, что число транзисторов на интегральной микросхеме удваивается каждые 18 месяцев. В конце 1990-х главным препятствием для разработки новых микропроцессоров стало тепловыделение (TDP).

Некоторые авторы относят  к микропроцессорам только устройства, реализованные строго на одной микросхеме. Такое определение расходится как с академическими источниками, так и с коммерческой практикой (например, варианты микропроцессоров Intel и AMD в корпусах типа SECC и подобных, такие как Pentium II, были реализованы на нескольких микросхемах).

В настоящее время, в связи  с очень незначительным распространением процессоров, не являющихся микропроцессорами, в бытовой лексике термины  «микропроцессор» и «процессор»  практически равнозначны.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Закон Мура и первый МК

 

Ещё в 1965 г. Гордон Мур (Gordon Moore), один из будущих основателей могущественной корпорации Intel, обратил внимание на интереснейший факт. Представив в виде графика рост производительности запоминающих микросхем, он обнаружил любопытную закономерность: новые модели микросхем появлялись каждые 18–24 месяца, а их ёмкость при этом возрастала каждый раз примерно вдвое. Если такая тенденция продолжится, предположил Г. Мур, то мощность вычислительных устройств экспоненциально возрастёт на протяжении относительно короткого промежутка времени.

Предвидение Г. Мура впоследствии блестяще подтвердилось, а обнаруженная им закономерность наблюдается и  в наши дни, причём с поразительной  точностью, являясь основой для  многочисленных прогнозов роста производительности. За 28 лет, истекшие с момента появления микропроцессора 4004 (1971 г.), число транзисторов на кристалле выросло более чем в 12 000 раз: с 2 300 до 28 000 000 в микросхеме Coppermine.

Ну а в 1976 г. экспоненциальное развитие полупроводниковой технологии привело к созданию фирмой Intel первого МК – 8048. Помимо ЦП, в его состав входила память программ, память данных, восьмибитный таймер и 27 линий ввода / вывода. Сегодня 8048 является уже достоянием истории, а вот следующее изделие, выпущенное Intel в 1980 г., живёт и здравствует поныне. Это – МК 8051.

Архитектура МК 8051

Этот МК можно считать  классическим образцом, по образу и  подобию которого позднее было создано  множество других изделий. Его структурная схема представлена на рис. 1. ЦП – главный узел МК. С ним связано такое важнейшее понятие, как система команд.

Система команд – это уникальный, характерный для данного ЦП набор двоичных кодов, определяющих перечень всех его возможных операций. Каждый такой код определяет одну операцию и называется кодом операции или командой. Чем больше кодов используется в системе команд, тем больше операций способен выполнить ЦП. МК 8051 – восьмиразрядный, поэтому коды операций у него имеют размер 8 бит. Теоретически может быть всего 256 восьмибитных кодов операций. В 8051 используются 255.

В зависимости от числа  использованных кодов операций, системы  команд подразделяют на две группы: CISC и RISC. Термин CISC означает сложную систему команд и является аббревиатурой английского определения Complex Instruction Set Computer. Аналогично термин RISC означает сокращённую систему команд и происходит от английского Reduced Instruction Set Computer. Систему команд МК 8051 можно отнести к типу CISC.

Однако, несмотря на широкую  распространённость этих понятий, необходимо признать, что сами названия не отражают главного различия между системами  команд CISC и RISC. Основная идея RISC-архитектуры – эго тщательный подбор таких комбинаций кодов операций, которые можно было бы выполнить за один такт тактового генератора. Основной выигрыш от такого подхода – резкое упрощение аппаратной реализации ЦП и возможность значительно повысить его производительность.

Первоначально реализовывать  такой подход удавалось, лишь существенно  сократив набор команд, отсюда и  родилось название RISC. Например, система команд МК семейства Microchip PIC16 включает в себя всего 35 инструкций и может быть отнесена к типу RISC. Очевидно, что в общем случае одной команде CISC-архитектуры должны соответствовать несколько команд RISC-архитектуры. Однако обычно выигрыш от повышения быстродействия в рамках RISC-архитектуры перекрывает потери от менее эффективной системы команд, что приводит к более высокой эффективности RISC-систем в целом по сравнению с CISC. Так, самая быстрая команда МК 8051 выполняется за 12 тактов. Даже если для каждой инструкции потребуется выполнить три инструкции RISC-контроллера, то в итоге RISC-архитектура обеспечит четырёхкратное увеличение производительности.

Попутно RISC-архитектура позволяет решить ещё ряд задач. Ведь с упрощением ЦП уменьшается число транзисторов, необходимых для его реализации, следовательно, уменьшается площадь кристалла. А с этим связано снижение стоимости и потребляемой мощности.

В этом месте можно было бы воскликнуть: будущее – за RISC-архитектурой! Однако в настоящее время грань между этими двумя понятиями стремительно стирается. Например, МК семейства AVR фирмы Atmel имеют систему команд из 120 инструкций, что соответствует типу CISC. Однако большинство из них выполняется за один такт, что является признаком RISC-архитектуры. Сегодня принято считать, что основным признаком RISC-архитектуры является выполнение команд за один такт тактового генератора. Число команд само по себе значения уже не имеет.

Тактовый генератор вырабатывает импульсы для синхронизации работы всех узлов устройства. Частоту их следования могут задавать кварцевый резонатор или RC-цепь, подключаемые к выводам МК. В некоторых МК предусмотрен режим работы тактового генератора без применения внешних элементов. В этом случае частота тактовых импульсов зависит от параметров кристалла, определяемых в процессе его производства.

ПЗУ – постоянное запоминающее устройство, предназначенное для хранения программ, поэтому часто эту память называют кодовой или памятью программ. До недавнего времени существовало две основных разновидности ПЗУ масочные и программируемые.

В масочные ПЗУ информацию заносят в процессе изготовления МК с помощью технологических  шаблонов – масок. Изменить её после окончания производственного цикла невозможно.

Такие ПЗУ используют лишь в случаях, когда качество программы  не вызывает сомнений и существует массовая потребность в МК именно с этой программой. Достоинство масочных ПЗУ – самая низкая стоимость при массовом производстве (от нескольких тыс. шт.).

В программируемые ПЗУ  информацию записывают с помощью  устройства, называемого программатором. МК с такими ПЗУ бывают двух типов: однократно и многократно программируемые (перепрограммируемые). Первые, как говорит само название, допускают только однократное программирование, после чего стереть информацию уже невозможно (МК с OTP-памятью – от англ. One Time Programmable). Используют их в мелкосерийном производстве (до 1000 шт.), когда применение масочных МК экономически не оправдано.

Многократно программируемые  микросхемы подразделяются на МК, оснащённые ПЗУ со стиранием ультрафиолетовым облучением (выпускаются в корпусах с «окном»), и МК с электрически перепрограммируемой памятью. Недостаток МК с ПЗУ со стиранием ультрафиолетовым облучением – очень высокая стоимость и относительно небольшое число циклов записи / стирания (зависит от суммарной дозы облучения кристалла и обычно не превышает 15…20).

В настоящее время все  более популярной становится новая  технология реализации ПЗУ – Flash-память. Её главное достоинство в том, что она построена на принципе электрической перепрограммируемости, то есть допускает многократное стирание и запись информации с помощью программаторов. Минимальное гарантированное число циклов записи / стирания обычно превышает несколько тысяч. Это существенно увеличивает жизненный цикл и повышает гибкость МК-систем, так как позволяет вносить изменения в программу МК как на этапе разработки системы, так и в процессе его работы в реальном устройстве.

ОЗУ – оперативное запоминающее устройство, используемое для хранения данных, поэтому эту память называют еще памятью данных. Число циклов чтения и записи в ОЗУ не ограничено, но при отключении питающего напряжения вся информация теряется.

Информация о работе Микроконтроллер ATtiny2313 фирмы Atmel