Железуглеродистые сплавы

Автор работы: Пользователь скрыл имя, 23 Апреля 2014 в 17:55, реферат

Краткое описание

К железоуглеродистым сплавам относятся сплавы железа с углеродом.
Для того чтобы изготовить детали, машины и механизмы качественными и обеспечить надежность и долговечность их в работе, необходимо заранее знать свойства используемых материалов. Например, для получения качественных отливок необходимо знать, при какой температуре плавится сплав и при какой он затвердевает, каковы его литейные свойства. Для проведения термообработки деталей надо знать, как изменяются свойства сплава при нагревании и охлаждении в твердом состоянии, каковы при этом будут структура и свойства сплава. При обработке давлением необходимо знать, при каких температурах тот или иной сплав лучше подвергается обработке давлением, имеет наиболее высокую пластичность.

Прикрепленные файлы: 1 файл

Железоуглеродистые сплавы.doc

— 392.50 Кб (Скачать документ)

Диаграмма состояния сплавов железа с углеродом

 

К железоуглеродистым сплавам относятся сплавы железа с углеродом.

Для того чтобы изготовить детали, машины и механизмы качественными и обеспечить надежность и долговечность их в работе, необходимо заранее знать свойства используемых материалов. Например, для получения качественных отливок необходимо знать, при какой температуре плавится сплав и при какой он затвердевает, каковы его литейные свойства. Для проведения термообработки деталей надо знать, как изменяются свойства сплава при нагревании и охлаждении в твердом состоянии, каковы при этом будут структура и свойства сплава. При обработке давлением необходимо знать, при каких температурах тот или иной сплав лучше подвергается обработке давлением, имеет наиболее высокую пластичность.

Для определения температурных интервалов, видов термической обработки и обработки давлением, температуры плавления и заливки сплава в литейные формы пользуются специальными графическими изображениями состояния и строения сплавов в зависимости от их состава и температуры нагревания. Такие графические изображения называют диаграммами состояния сплава.

Построение диаграммы состояния. Диаграммы состояний обычно строят термическим методом (рис. 1). Сначала получают множество кривых охлаждения сплавов с различным содержанием составляющих элементов в зависимости от температуры и времени охлаждения. Кривые охлаждения строят аналогично построению кривых охлаждения для определения полиморфных превращений. По перегибам и остановкам на кривых охлаждения определяют критические температуры и критические точки сплава.


 

Рис. 1. Схема построения диаграммы состояния сплавов железа с углеродом:

а — кривые охлаждения сплавов с различным содержанием углерода,

б —диаграмма

Критической называется температура, при которой происходит изменение в строении, а значит, и в свойствах металлов и сплавов. При критических температурах кривые охлаждения резко изменяют свой характер.

Критическими точками называются точки перегиба 1, 2, 3, 4 на кривых охлаждения (см. рис. 1). Однотипные критические точки (например, точки /) кривых охлаждения соединяют линией (линия АС). Комплекс линий, объединяющих критические точки сплавов, в зависимости от химического состава сплава и его температуры представляет собой диаграмму состояния. В табл. 1 приведены критические температуры критических точек 1, 2, 3, 4.

Структурные составляющие железоуглеродистых сплавов. При кристаллизации железоуглеродистых сплавов образуются следующие структурные составляющие: аустенит, феррит, цементит, перлит, ледебурит.

Рис. 2. Диаграмма состояния сплавов железа с углеродом: I...V1 — характерные сплавы

Аустенит — твердый раствор углерода в  железе. У сплавов с содержанием углерода до 2 % (стали) при температурах выше 723 °С структура представляет собой аустенит — на диаграмме (рис. 3) область AESG. Кристаллическая решетка аустенита - гранецентрированный куб. При нормальной температуре  (18...24°С) аустенит в простых железоуглеродистых сплавах отсутствует и его увидеть нельзя. Аустенит обладает высокой пластичностью (б = 40...50 %) и низкой твердостью (НВ170...200), хорошо поддается горячей обработке давлением (ковке, штамповке и прокатке). На диаграмме аустенит обозначается буквой А.

Феррит—твердый раствор углерода в железе. В феррите растворяется очень мало углерода (до 0,02 %). Техническое железо имеет структуру феррита (на диаграмме область GPQ). Кристаллическая решетка феррита— объемно-центрированный куб. Феррит обладает высокой пластичностью и низкой твердостью (6 = = 40...50 %; НВ80...120), хорошо поддается обработке давлением в холодном состоянии (волочению, штамповке). Чем больше феррита в сплавах, тем они мягче и пластичнее. На диаграмме феррит обозначается буквой Ф.

Цементит — самая твердая (НВ800) и хрупкая (6 = 0 °/о) составляющая железоуглеродистых сплавов — представляет собой химическое соединение железа и углерода (карбид железа Fe3C), содержащее 6,67 % углерода. Кристаллическая решетка цементита сложная. Особенность цементита состоит в том, что в присутствии значительного количества некоторых элементов, например кремния Si, цементит может вообще не образоваться или может распадаться с образованием углерода — графита и железа. Сплавы из чистого цементита на практике не применяют. Чем больше цементита в железоуглеродистых сплавах, тем они тверже и хрупче. На диаграмме цементит обозначается буквой Ц.

Перлит — механическая смесь феррита и цементита, содержащая 0,83 % углерода. Перлит образуется при перекристаллизации (распаде) аустенита при температуре 723°С (на диаграмме линия Р/С). Распад аустенита на перлит называется эвтектоидным превращением, а перлит — эвтектоидом. Перлит присутствует во всех железоуглеродистых сплавах при температуре ниже 723°С, обладает высокой прочностью (ав до 800 МПа) и твердостью (НВ200). Чем мельче включения феррита и цементита в перлите, тем выше показатели его механических свойств. Поэтому чем больше перлита в сплаве, тем выше показатели механических свойств сплава. На диаграмме перлит обозначается буквой П.

Ледебурит — механическая смесь аустенита и цементита, образующаяся при кристаллизации жидкого сплава с содержанием углерода 4,3 % при постоянной температуре 1147°С (точка С на диаграмме). Ледебурит — единственный из всех железоуглеродистых сплавов, который кристаллизуется при постоянной температуре с образованием механической смеси. Такая кристаллизация называется эвтектической, а ледебурит — эвтектикой.

Ледебурит обладает большой хрупкостью и высокой твердостью (НВ700), хорошими литейными свойствами. Ледебурит содержится во всех высокоуглеродистых сплавах, называемых белыми чугунами. На диаграмме ледебурит обозначается буквой Л.

Практическое использование диаграммы состояний. Применяемые в промышленности железоуглеродистые сплавы содержат не более 4,5 % углерода. Сплавы железа с углеродом до 2 % называются сталями, сплавы железа с углеродом более 2 % — чугунами.

Линия ACD— линия ликвидус — изображает температуру начала затвердевания сталей и чугунов. Выше этой температуры сплав полностью расплавляется, т. е. переходит в жидкое состояние (на диаграмме обозначается буквой Ж).

Линия AECF— линия солидус — изображает температуру окончания затвердевания и начала плавления сталей и белых чугунов. Между линиями ликвидус и солидус сплавы находятся в жидко-твердом состоянии.

Для практического использования диаграммы проследим за структурными превращениями характерных железоуглеродистых сплавов при их охлаждении.

Сплав I (сталь содержит углерода менее 0,83 %), Выше линии АС сплав находится в жидком состоянии. С понижением температуры на линии АС начинают кристаллизоваться первые включения аустенита. При дальнейшем понижении температуры количество закристаллизовавшегося аустенита увеличивается и при температуре, соответствующей линии АЕ, сталь полностью затвердевает. Ниже линии АЕ сталь охлаждается без превращений до температуры, соответствующей линии GS. При этой температуре из твердого аустенита начинают выделяться зерна феррита с очень малым содержанием углерода, поэтому в оставшемся аустените количество углерода увеличивается. Процесс протекает до линии PS.

На линии PS при температуре 723 °С из оставшегося аустенита образуется перлит. При нормальных темпера турах структура стали будет состоять из феррита и перлита.


Сталь с содержанием углерода менее 0,83 % называют доэвтектоидной. Микроструктура феррита и доэвтектоидной стали показана на рис. 3, а, б.

 

Сплав II (сталь содержит углерода 0,83%)- Кристаллизация идет между линиями ликвидус АС и солидус АЕ,   аналогично  кристаллизации  сплава I (см. рис. 2). Закристаллизовавшийся аустенит охлаждается до точки 5. При температуре 723 СС, соответствующей точке S, происходит перекристаллизация аустенита с образованием перлита (эвтектоидное превращение). Сталь, имеющую структуру перлита, называют эвтектоидной (рис. 3, в). Строение эвтектоидной стали при нормальных температурах пластинчатое, т. е. структура стали состоит из чередующихся пластинок феррита и цементита.

Рис. 3. Микроструктуры типичных  железоуглеродистых  сплавов:

а — феррит, б — доэвтектоидная сталь, в — эвтектоидная сталь, з — заэвтектоидная  сталь,      д — доэвтектический  белый чугун,  е — эвтектический  белый чугун, ж — заэвтектический белый чугун; Ф — феррит, Л — перлит, Ц1— первичный цементит, ЦІІ — вторичный цементит, Л—ледебурит

Сплав III (сталь содержит углерода более 0,83 %). Кристаллизация сплава III аналогична кристаллизации сплава I. При температуре ниже линии АЕ сталь имеет структуру аустенита. На линии ES из аустенита по границам его зерен начинают выделяться включения с содержанием углерода 6,67 % — цементит. Поскольку цементит в этом случае образовался из твердого аустенита, т. е. при перекристаллизации стали, его называют вторичным цементитом — ЦІІ.

Вторичный цементит выделяется из аустенита при понижении температуры до 723 °С. При температуре 723 °С происходит эвтектоидное превращение. Оставшийся аустенит, содержащий углерода 0,83 %, перекристаллизуется в перлит.

При нормальных температурах структура стали с содержанием углерода более 0,83 % состоит из перлита и вторичного цементита. Вторичный цементит располагается в виде сетки по границам зерен перлита (рис. 3,г).

Сплав IV (чугун содержит углерода более 2%). Выше линии АС сплав находится в жидком состоянии. С понижением температуры на линии АС начинают кристаллизоваться первые включения аустенита. При дальнейшем понижении температуры количество закристаллизовавшегося аустенита все время увеличивается. При достижении температуры 1147°С (на линии EF) оставшаяся часть жидкого расплава моментально кристаллизуется с образованием механической смеси аустенита и цементита, т. е. происходит эвтектическая кристаллизация с образованием эвтектики — ледебурита. Начиная с температуры 1147 до 723 °С, из аустенита выделяется вторичный цементит ЦІІ. При температуре 723 °С происходит эвтектоидное превращение — из аустенита образуется перлит.

При нормальных температурах структура чугуна состоит из перлита, вторичного цементита и ледебурита. Ледебурит после эвтектоидного превращения представляет собой механическую смесь перлита и цементита. Чугуны с содержанием углерода до 4,3 % называются доэвтектическими чугунами. Если углерод находится в чугунах в химически связанном состоянии с железом, т.е. в цементите, то такие чугуны называются белыми чугунами. Микроструктура сплава IV, представляющего собой доэвтектический белый чугун, показана на рис. 3.

Сплав V (чугун содержит 4,3 % углерода). До температуры 1147°С сплав находится в жидком состоянии.

При температуре 1147°С (точка С на диаграмме) происходит эвтектическая кристаллизация с одновременным образованием включений аустенита и цементита. При температуре от 1147 до 723 °С из аустенита выделяется вторичный цементит Цц. При температуре 723 °С происходит эвтектоидное превращение — из аустенита образуется перлит. Чугун с содержанием углерода 4,3 % называют эвтектическим белым чугуном.

При нормальных температурах структура белого эвтектического чугуна состоит из включений перлита и цементита (рис. 3, е).

Сплав VI (чугун содержит углерода более 4,3 %). При температуре выше линии CD сплав находится в жидком состоянии. На линии CD начинают кристаллизоваться включения цементита, который называют первичным цементитом Ц. При понижении температуры до 1147°С количество первичного цементита все время увеличивается. На линии EF при температуре 1147°С происходит эвтектическая кристаллизация (оставшаяся часть жидкого расплава кристаллизуется с одновременным образованием включений аустенита и цементита).

Ниже линии EF из аустенита эвтектики при охлаждении выделяется вторичный цементит ЦІІ. При температуре 723 °С происходит эвтектоидное превращение — аустенит перекристаллизуется в перлит. Чугуны с содержанием углерода более 4,3 % называют заэвтектическими. При нормальных температурах структура белого заэвтектического чугуна (рис. 3., ж) состоит из включений первичного цементита и эвтектики, представляющей собой при нормальных температурах смесь перлита и цементита.

 

Производство чугуна

Производство чугуна. Материалы для плавки чугуна в доменной печи называют шихтой. Шихта состоит из железной руды, которая предварительно подготовляется к плавке, известняка, необходимого для образования шлака, топлива, которым служит металлургический кокс.

Железная руда — основной материал для производства чугуна — представляет собой горные породы сложного состава.

Обычно железные руды содержат окислы железа Fe2O3, Fe3O4, а также окислы кремния, марганца, фосфора, серы, кальция, магния и других элементов, которые называют пустой породой, потому что в них нет железа.

 

Чтобы понизить температуру плавления пустой породы и золы, получающейся от сгорания кокса, в доменную печь добавляют известняк СаСО3 — флюс. Пустая порода и зола кокса сплавляются с известняком и образуют шлак.

Рис. 4. Схема доменной печи:

1 — летка для выпуска жидкого чугуна, 2 — шлак, 3 — загрузочное устройство, 4 — железная руда, 5— известняк, 6 — кокс, 7 — капли расплавленного чугуна, 8 — капли расплавленного шлака, 9 — фурмы, 10 — летка для выпуска жидкого шлака,  11 — жидкий чугун

В доменную печь (рис. 4) сверху с помощью устройства 3 загружается определенными порциями шихта. Сначала загружают кокс, затем флюсы и железную руду. В такой последовательности загружается весь объем печи.

Для розжига кокса и создания в печи высоких температур, обеспечивающих процесс плавления шихты, по специальным каналам, называемым фурмами 9, вдувают горячий воздух.

Плавление начинается выше фурм, в результате появляются капли расплавленного чугуна 7 и шлака 8. Стекая на днище печи по кускам раскаленного кокса, жидкий чугун 11 и шлак 2 нагреваются до температур 1400... 1450 °С и собираются на подине, которая называется лещадью. Периодически чугун и шлак выпускают из печи через специальные отверстия — летки 1 и 10.

Информация о работе Железуглеродистые сплавы