Виды термической обработки

Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 11:27, реферат

Краткое описание

Основными видами термической обработки, различно изменяющими структуру и свойства стали и назначаемыми в зависимости от требовании, предъявляемых к полуфабрикатам (отливки, поковки, прокат и т. д.) и готовыми изделиями, являются: отжиг, закалка, отпуск.

Прикрепленные файлы: 1 файл

Виды термообработки 2.docx

— 34.31 Кб (Скачать документ)

 

Закалка с самоотпуском. В этом случае охлаждение изделия в закалочной среде прерывают с тем, чтобы в сердцевине изделия сохранилось еще некоторое количество тепла. Под действием теплообмена температура в более сильно охладившихся поверхностных слоях повышается и сравнивается с температурой сердцевины — происходит отпуск поверхности стали (самоотпуск). Нередко в сердцевине остается больший запас тепла, чем это требуется для самоотпуска. Тогда во избежание излишнего разогрева поверхности изделие вновь погружают в закалочную среду. Сердцевина в случае закалки с самоотпуском имеет более низкую твердость, чем поверхностные слои.

 

Ступенчатая закалка. При выполнении закалки по этому способу (рис 137 а) сталь после нагрева до температуры закалки охлаждают в среде, имеющей температуру несколько выше точки Мн (обычно 180—250 СС), и выдерживают в ней сравнительно короткое время Затем изделие охлаждают до комнатной температуры на воздухе В результате выдержки в закалочной среде достигается выравнивание температуры по всему сечению изделия, но эта выдержка должна быть ограничена и не должна вызывать превращения аустенита с образованием бейнита.

 

Ступенчатая закалка углеродистых сталей может быть применена лишь для изделий диаметром не более 8—10 мм. Скорость охлаждения более крупных изделий в среде с температурой выше точки Мн оказывается ниже критической скорости закалки, и аустенит претерпевает распад на не мартенситные продукты превращения.

 

 

 

 

Отпуск при температуре 150—240° С называется низкотемпературным, при температурах от 400° С до Ас1 — высокотемпературным. С повышением температуры отпуска закалённых изделий понижаются значения σв, Нв и повышаются значения δ, ψ.

 

Двойная термическая обработка стали, состоящая из закалки (или нормализации) и последующего высокотемпературного отпуска (при 500—670° С), называется улучшением.

 

Цель улучшения — измельчение структуры, подготовка структуры к последующей окончательной термообработке и повышение вязкости.

Улучшение применяется главным образом для изделий из легированной стали в качестве предварительной и окончательной термообработки.

 

Нагрев стали до температуры выше Ас3. выдержка при этой температуре с последующим среднезамедленным охлаждением (в расплавленных металлах, расплавленных солях, обдувкой паровоздушной смесью или воздухом) называются одинарной термической обработкой (рис. 2, режим 2). После одинарной термической обработки сталь приобретает структуру троостита, троосто-сорбита или сорбита

 

Цель одинарной термической обработки — получение минимальных деформаций, избежание трещин и повышение твёрдости и износоустойчивости изделий. Одинарную термическую обработку, применяемую при протяжке проволоки в качестве промежуточной операции с целью восстановления её пластических свойств, называют патентированием. Патентирование проволоки производится между операциями протяжки и заключается в нагреве до 850— 900° С с последующим охлаждением в свинцовой ванне температурой 450—500° С; при этом проволока получает сорбитовую структуру.

 

Нагрев стали (как и при обычной закалке) до температуры выше точки Ас3, выдержка при этой температуре и последующее охлаждение в закалочной среде температурой 180—350° С, с выдержкой в этой среде в течение времени, необходимого для окончания изотермического превращения аустенита, называются изотермической закалкой (рис. 2, режим 4).

 

Цель изотермической закалки — получение минимальных внутренних напряжений, минимальных деформаций и высокой вязкости.

 

Отпуск

 

Отпуск заключается в нагреве закаленной стали до температуры ниже Act, выдержке при заданной температуре и последующем охлаждении с определенной скоростью. Отпуск является окончательной операцией термической обработки, в результате которого сталь получает требуемые механические свойства. Кроме того, отпуск полностью или частично устраняет внутренние напряжения, возникающие при закалке. Эти напряжения снимаются тем полнее, чем выше температура отпуска. Так, осевые напряжения в цилиндрическом образце из стали, содержащей 0,3 % С, в результате отпуска при 550 °С уменьшаются с 600 до 80 МПа.

 

Наиболее интенсивно напряжения снижаются в результате выдержки при 600 °С в течение 15—30 мин. После выдержки в течение 1,5 ч напряжения снижаются до минимальной величины, которая может быть достигнута отпуском при данной температуре.

 

Скорость охлаждения после отпуска оказывает большое влияние на величину остаточных напряжений. Чем медленнее охлаждение, тем меньше остаточные напряжения. Быстрое охлаждение в воде от 600 °С создает новые тепловые напряжения. Охлаждение после отпуска на воздухе дает напряжения на поверхности изделия в 7 раз меньшие, а в масле в 2,5 раза меньшиепосравнениюснапряжени-ями при охлаждении в воде. По этой причине изделия сложной формы во избежание их коробления после отпуска при высоких температурах следует охлаждать медленно, а изделия из легированных сталей, склонных к обратимой отпускной хрупкости, после отпуска при 500—650 °С во всех случаях следует охлаждать быстро.

 

Различают следующие три вида отпуска.

 

Низкотемпературный (низкий) отпуск проводят при нагреве до 250 С. При этом снижаются закалочные макронапряжения, мартенсит закалки переводится в отпущенный мартенсит, повышается прочность и немного улучшается вязкость без заметного снижения твердости. Закаленная сталь (0,6—1,3 % С) после низкого отпуска сохраняет твердость в пределах HRC 58— 63, а следовательно, высокую износостойкость. Однако такое изделие (если оно не имеет вязкой сердцевины) не выдерживает значительных динамических нагрузок.

 

Низкотемпературному отпуску подвергают режущий и мерительный инструмент из углеродистых и низколегированных сталей, а также детали, претерпевшие поверхностную закалку, цементацию, цианирование или нитроцементацию. Продолжительность отпуска составляет обычно 1—2,5 ч, а для изделий больших сечений и измерительных инструментов назначают более длительный отпуск.

 

Среднетемпературный (средний) отпуск выполняют при 350—500 °С и применяют главным образом для пружин и рессор, а также для штампов. Такой отпуск обеспечивает высокие пределы упругости и выносливости и релаксационную стойкость. Структура стали после среднего отпуска — троостит отпуска или троостомартенсит; твердость стали HRC 40—50. Температуру от пуска надо выбирать таким образом, чтобы не вызвать необратимой отпускной хрупкости.

 

Охлаждение после отпуска при 400—450 °С следует проводить в воде, что способствует образованию на поверхности сжимающих остаточных напряжений, которые увеличивают предел выносливости пружин.

 

Высокотемпературный (высокий) отпуск производят при 500—680 °С. Структура стали после высокого отпуска — сорбит отпуска. Высокий отпуск создает наилучшее соотношение прочности и вязкости стали.

 

Закалка с высоким отпуском (по сравнению с нормализацией или отжигом) весьма сильно одновременно повышает временное сопротивление, предел текучести, относительное сужение и особенно ударную вязкость. Термическую обработку, состоящую из закалки и высокого отпуска, называют улучшением.

 

Улучшению подвергают среднеуглеродистые (0,3—0,5 % С) конструкционные стали, к которым предъявляются высокие требования по пределу выносливости и ударной вязкости. Улучшение значительно повышает конструктивную прочность стали, уменьшая чувствительность к концентраторам напряжений, увеличивая работу развития трещин и снижая температуру порога хладноломкости. Однако износостойкость улучшенной стали вследствие ее пониженной твердости не высокая.

 

Поверхностная закалка

 

Ряд деталей машин и механизмов, работающих на износ, подвергают поверхностной закалке, осуществляемой различными методами. Поверхностная закалка позволяет применять менее легированную сталь, заменяет в ряде случаев трудоёмкие операции химико-термической обработки (цементация, азотирование) и значительно упрочняет поверхностный слой деталей, работающих, кроме трения, в условиях знакопеременных нагрузок.

 

Наиболее широко подвергаются поверхностной закалке детали из углеродистой стали марок 40, 45, 50, а также низколегированной марганцем или хромом среднеуглеродистой стали.

 

Наиболее совершенным методом поверхностной закалки является нагрез деталей токами высокой частоты до температуры выше Ас3 последующая закалка водой при помощи спрейера. Время нагрева (3-6 сек.) зависит от размеров закаливаемой поверхности, требуемой глубины закалённого слоя, частоты. тока и мощности установки. Во многих случаях целесообразно прекращение подачи охлаждающей воды до момента полного остывания закаливаемой детали. Это приводит к самоотпуску и освобождает от необходимости проведения специальной операции отпуска.

 

Тяжелонагружённые детали, требующие, кроме высокой поверхностной твёрдости, также и высоких механических свойств сердцевины, перед высокочастотной поверхностной закалкой подвергаются закалке и отпуску или нормализации и отпуску.

 

Высокочастотная поверхностная закалка применяется для весьма обширной номенклатуры деталей (шейки коленчатых валов, кулачки распределительных валов, гильзы цилиндров двигателей внутреннего сгорания, зубья различных шестерён, валики, пальцы гусеничных траков, шпиндели и направляющие различных станков и многие другие детали).

 

Закалённый поверхностный слой получается глубиной до 5 мм поверхностной твёрдостью до НRC =62—64 (после закалки).

 

Нагрев поверхностного слоя электротоком при помощи специальных токонесущих электродов роликов, соприкасающихся с закаливаемой поверхностью, с последующим охлаждением водой (или воздухом) называется контактным методом поверхностной закалки. Этот метод разработан проф. Н. В. Гевелингом и нашёл применение для закалки деталей с простыми конструктивными формами (тела вращения—шейки шпинделей станков, валы; плоские поверхности — направляющие станков, головки рельсов).Глубина закалки 3—6мм; поверхностная твёрдость HRC = 60.

 

Для поверхностной закалки используется также нагрев кислородно-газовым пламенем (ацетилен или светильный газ) с последующим охлаждением водой при помощи спрейера. Этот метод успешно применяется для поверхностной закалки ряда ответственных деталей (шейки коленчатых валов танковых и тракторных двигателей, зубья различных шестерён, опорные кольца, бронедетали, паровозные параллели и т. п.)

 

Метод поверхностной закалки со сквозным (объёмным) прогревом детали выше Ac3 и последующим охлаждением в резко закаливающем охладителе с выдержкой в нём в течение незначительного времени применяется в массовом производстве для деталей цилиндрической формы из стали марок 40,45,50 (коленчатые я распределительные валы автомобильных моторов, задние полуоси, промежуточные и карданные валы автомобилей)*. Глубина закалённого слоя 3—5 мм (при выдержке 10—40 сек. в охладителе — 10%-ный водный раствор NaOH температурой 30—35° С). Поверхностная твёрдость Н%с =48—50. Непосредственно после закалки должен следовать отпуск деталей во избежание образования трещин.

 

Метод поверхностной закалки с поверхностным нагревом выше Ac3 слоя требуемой глубины нашёл применение для закалки шестерён. При этом методе применяется легированная хромом и никелем сталь, содержащая около 0,75 — 0,85% углерода. Процесс заключается в следующем: деталь нагревается полностью в соляной ванне до температуры ниже Ас3, затем переносится на короткое время в свинцовую ванну, имеющую температуру значительно выше Ас3 где прогревается с поверхности до температуры закалки, после чего погружается в закалочную среду. Глубина закалённого слоя 0,5—1,0 мм.

 

Дифференциальная термообработка

 

Для получения заданной твёрдости детали на определённой длине или окружности применяется дифференциальная термообработка, осуществляемая одним из следующих методов.

 

1) Полный нагрев детали и закалка с предохранением отдельных мест детали от охлаждения специальными патронами или струйчатая (масло, вода, раствор NaOH) закалка с подачей жидкости только на закаливаемые места. После закалки следует отпуск всей детали.

 

2) Местный нагрев детали выше точки Ас3 пропусканием тока промышленной частоты (метод сопротивления) или в соляной или свинцовой ванне и последующая закалка нагретой части.

 

3) Обычная полная закалка всей детали и местный отпуск в свинцовой ванне, соляной ванне, в специальных печах или током промышленной частоты.

 

Обработка холодом

 

Охлаждение стальных изделий (после предварительной закалки или закалки с отпуском) до температур ниже 0° С (обычно минус 60-80° С), выдержка при этой температуре для охлаждения по всему сечению изделия и последующее извлечение из холодильника с самонагревом до комнатной температуры называются обработкой холодом. Во время охлаждения в закалённой стали возобновляется мартенситное превращение

 

Цель обработки холодом — уменьшение количества остаточного аустенита для повышения твёрдости и износоустойчивости изделий из высоколегированной стали, содержащей после цементации, закалки и низкотемпературного отпуска в поверхностном цементованном слое значительные количества остаточного аустенита. После обработки холодом деталей (например, из стали 18ХНМА, 20Х2Н4А и 12Х2Н4А) обязательной операцией является низкотемпературный отпуск при 170—200° С для уничтожения внутренних напряжений.


Информация о работе Виды термической обработки