Технология литейного производства

Автор работы: Пользователь скрыл имя, 06 Июня 2014 в 19:54, реферат

Краткое описание

Также к задачам относятся: автоматизация и механизация технологических процессов производства отливок; получение отливок с минимальными припусками на механическую обработку. Это позволяет повысить коэффициент использования металла и снизить трудоемкость на операциях механической обработки.
Для изготовления отливок применяют множество способов литья:
- в песчано-глинистые формы,
- в металлические формы,
- в оболочковые формы,
- по выплавляемым моделям,

Содержание

1. Технология литейного производства 2
1.2. Свойства литейных сплавов 3
1.3. Изготовление отливок в песчаных формах 4
1.4. Формовочные и стержневые смеси 7
1.5. Литниковые системы 8
1.6. Изготовление литейных форм 8
1.7. Технология производства отливок 11
1.7. Изготовление отливок специальными способами литья 13
1.8. Выбор рационального способа изготовления отливок 18
1.9. Дефекты отливок и их исправление 19
2. Сварка 22
2.1. Сущность способа. 23
2.2.Сварные соединения 24
2.3.Недостатки 30
3. Разработать технологический процесс формообразования заготовки способом листовой штамповки 32
4. Сисок литературы

Прикрепленные файлы: 1 файл

Технология литейного производства.doc

— 1.79 Мб (Скачать документ)

При получении отливок на машинах с вращением формы вокруг вертикальной оси (рис. 6, б) расплавленный металл из разливочного ковша 4 заливают в литейную форму 2, укрепленную на шпинделе 1, который вращается от электродвигателя. Расплавленный металл центробежными силами прижимается к боковой стенке изложницы. Литейная форма вращается до полного затвердевания. После остановки формы отливка 3 извлекается. На этих машинах изготовляют кольца большого диаметра высотой не более 500 мм.

На рис. 21, в показана схема процесса литья сложных тонкостенных рабочих колес на машинах с вертикальной осью вращения: 1, 6 - половины кокиля; 2 - стержень, который формирует канал рабочего колеса и его лопасти; 3 - стол машины; 4 - стержень, воспринимающий удар струи заливаемого металла; 5 - шпиндель центробежной машины. Частота вращения изложницы при центробежном литье составляет 150-1200 об/мин. Изложницы перед заливкой нагревают до температуры 150-200° С.  Температуру   заливки сплавов назначают на 100-150° С выше температуры ликвидуса.

 

Рис. 6 Схемы процессов изготовления отливок центробежным литьем

 

Преимущества центробежного литья—получение внутренних полостей трубных заготовок без применения стержней; большая экономия сплава за счет отсутствия литниковой системы; возможность получения двухслойных заготовок, что достигается поочередной заливкой в форму различных сплавов (сталь и чугун, чугун и бронза и т. д.).

Выбор рационального способа изготовления отливок

Современные требования, предъявляемые к литым заготовкам деталей машин, характеризуются максимальным приближением отливок по форме и размерам к готовым деталям, экономией металла, применением прогрессивных методов литья. Однако следует иметь в виду, что технические требования, предъявляемые к литым деталям, могут быть обеспечены одинаково надежно различными способами литья. При выборе оптимального способа получения литых деталей следует проводить сравнительный анализ возможных вариантов рассматриваемых технологических процессов литья. В качестве критериев сравнительного анализа способов литья принимают технологические возможности способов (масса и габаритные размеры отливок, сложность и требования, предъявляемые к ним, масштаб производства и др.), возможности способов литья в обеспечении равномерной мелкозернистой структуры, более высоких механических свойств.

Кроме того, необходимо учитывать литейные свойства сплавов. Например, если сплав обладает пониженной жидкотекучестью, то нежелательно применять литье в металлические формы-кокили. В этом случае целесообразно использовать литье под давлением, литье по  выплавляемым моделям и другие способы, применение которых повышает жидкотекучесть сплавов. Если для изготовления отливок используются сплавы с высокой усадкой, то нежелательно применять литье в кокиль и под давлением, так как возможно образование трещин в отливках из-за низкой податливости форм и из-за сложности установки прибылей.

При выборе способа литья необходимо учитывать технологичность конструкции литой детали применительно к рассматриваемым способам. Так, сложные по конфигурации отливки получают литьем под давлением, по выплавляемым моделям или в песчаных формах. Литьем в кокиль получают отливки с простой наружной конфигурацией, а центробежным литьем изготовляют, как правило, отливки типа тел вращения. Наиболее тонкостенные отливки получают литьем по выплавляемым моделям и литьем под давлением, при литье в кокиль стенки отливки должны быть значительно толще, чем при литье в песчаные формы, и. т. д.

Если при литье в песчаные формы габаритные размеры и масса отливок практически не ограничены, то специальные способы литья применяют для получения мелких и средних по массе отливок. Кроме того, следует выбирать такой способ литья, который обеспечивал бы получение отливок с заданной точностью и заданным параметром шереховатости поверхности. Малая шероховатость поверхности отливок позволяет сохранить литейную корку, которая, как правило, имеет повышенные твердость и износостойкость, снизить себестоимость готовых деталей за счет экономии металла и снижения трудоемкости при механической обработке.

Важными технико-экономическими критериями выбора рационального способа изготовления отливок являются экономия используемых материалов и минимальная себестоимость формообразования заготовок.

Таким образом, выбор рационального способа изготовления литых заготовок является многокритериальной задачей, для решения которой целесообразно использовать ЭВМ. Использование ЭВМ для выбора способа получения отливок предопределяет наличие математической модели и алгоритма соответствующего процесса.

Исходной информацией для выбора способа изготовления отливки с помощью ЭВМ являются чертеж детали и технические требования на нее; материал детали; программа выпуска; параметры, по которым осуществляется оптимизация способа получения литой детали, и т. д.

 

Дефекты отливок и их исправление

Дефекты отливок по внешним признакам подразделяют на наружные (песчаные раковины, перекос, недолив и др.); внутренние (раковины усадочные и газовые, трещины горячие и холодные и др.).

Песчаные раковины – открытые или закрытые пустоты в теле отливки, которые возникают из-за низкой прочности формы и стержней, слабого уплотнения  формы,  недостаточного крепления выступающих частей формы и прочих причин.

Перекос – смещение одной части отливки относительно другой, возникающее в результате небрежной сборки формы, износа центрирующих штырей, несоответствия знаковых частей стержня на модели и в стержневом ящике, неправильной   установки стержня в форму и других причин.

Недолив – некоторые части отливки остаются незаполненными в связи с низкой температурой заливки, недостаточной жидкотекучестью, недостаточным сечением элементов литниковой системы, неправильной конструкцией отливки (например, малая толщина стенки отливки) и др.

Усадочные раковины – открытые или закрытые пустоты в теле отливки с шероховатой поверхностью и грубокристаллическим строением. Эти дефекты возникают при недостаточном питании массивных узлов, нетехнологичной конструкции отливки, неправильной установке прибылей, заливке перегретым металлом.

Газовые раковины – открытые или закрытые пустоты в теле отливки с чистой и гладкой поверхностью, которые возникают из-за недостаточной газопроницаемости формы и стержней, повышенной влажности формовочных смесей и стержней, насыщенности расплавленного металла газами и др.

Трещины горячие и холодные – разрывы в теле отливки, возникающие при заливке чрезмерно перегретым металлом, из-за неправильной конструкции литниковой системы и прибылей, неправильной конструкции отливки, повышенной неравномерной усадки, низкой податливости форм и стержней и др.

Методы обнаружения дефектов. Наружные дефекты отливок обнаруживаются внешним осмотром непосредственно после извлечения отливок из формы или после их очистки. Внутренние дефекты отливок выявляются радиографическими или ультразвуковыми методами дефектоскопии.

При использовании радиографических методов (рентгенографии, гаммаграфии) на отливки воздействуют рентгеновским или гамма-излучением. С помощью этих методов выявляют наличие дефекта, размеры и глубину его залегания.

При ультразвуковом контроле ультразвуковая волна, проходящая через стенку отливки, при встрече с границей дефекта (трещиной, раковиной и др.) частично отражается. По интенсивности отражения волны судят о наличии, размерах и глубине залегания дефектов.

Трещины в отливках выявляют люминесцентным контролем, магнитной или цветной дефектоскопией.

Методы исправления дефектов. Незначительные дефекты в ответственных местах отливок исправляют следующими методами:

Заделка дефектов замазками – декоративное исправление мелких поверхностных раковин на отливках. Перед заполнением мастикой дефектные места очищают от грязи и обезжиривают. После заполнения раковин мастикой исправленное место заглаживают, подсушивают и затирают пемзой или графитом.

Пропитывание составами применяют для устранения пористости отливок. С этой целью их погружают на 8-12 ч в водный раствор хлористого аммония. Проникая в промежутки между кристаллами металла, раствор образует оксиды, заполняющие поры отливок. Для устранения течи отливки из цветных сплавов пропитывают бакелитовым лаком.

Газовую и электрическую сварку применяют для исправления дефектов на необрабатываемых поверхностях (раковины, сквозные отверстия, трещины). Дефекты в чугунных отливках заваривают с использованием чугунных электродов и присадочных прутков, в стальных отливках – электродами соответствующего состава. Чугунные отливки перед заваркой нагревают до температуры 350-600 С, а после заварки их медленно охлаждают до температуры окружающей среды.

 

Сварка

Сварка – процесс получения неразъемного соединения частей изделия путем местного сплавления или пластической деформации металла, в результате чего возникает прочное сцепление металлов, основанное на межатомном взаимодействии.

Сварочная дуга - длительный мощный электрический разряд.

Сущность процесса – При сварке плавлением кромки соединяемых деталей и дополнительный (присадочный) металл, применяемый для заполнения зазора между ними, нагреваются до расплавления. После перемешивания основного и дополнительного металлов получается общая сварочная ванна. В результате охлаждения и затвердевания этой ванны образуется прочное соединение металлических деталей. Процесс образования сварного соединения происходит в данном случае без воздействия давления.

Все существующие сварочные процессы можно разделить на две основные группы — сварку давлением и сварку плавлением. По виду энергии, необходимой для образования сварного соединения, и условиям введения ее в металл сварка подразделяется на дуговую, газовую, термитную, электрошлаковую, электронно-лучевую, контактную, трением, ультразвуковую и другие виды. По степени автоматизации сварка подразделяется на ручную, полуавтоматическую и автоматическую.

Для получения неразъемных соединений раньше преимущественно использовалась клепка. Процесс клепки связан с большими затратами металла. Сварка позволяет экономить от 10 до 20% металла по сравнению с клепкой, до 30% по сравнению со стальным литьем и до 50% по сравнению с чугунным литьем.

Сварное изделие проще в изготовлении и и дешевле, чем клепаное. Сварные швы, по сравнению с клепаными, имеют более высокую плотность, прочность и надежность. При использовании сварки уменьшаются затраты труда на изготовление металлоконструкций, улучшаются условия труда в металлообрабатывающих цехах.

Применение сварки позволяет использовать самые разнообразные профили металла. Для сжатых стержней в клепаных изделиях часто применяют уголки.

Сваркой можно получить расположение уголков, дающие трубчатообразный профиль. Благодаря своим преимуществам сварка металлов нашла широкое применение во всех отраслях народного хозяйства.

Сущность способа.

 
К электроду и свариваемому изделию для образования и поддержания сварочной дуги от источников сварочного тока подводится постоянный или переменный сварочный ток. Сварочная дуга горит между металлическим стержнем электрода и основным металлом Под действием тепла дуги металл дуги электрода, покрытие электрода и основной металл расплавляются, образуя сварочную ванну. Капли жидкого металла с торца расплавленного электродного стержня переносятся в ванну через дуговой промежуток. Вместе со стержнем плавится покрытие электрода, образуя вокруг дуги газовою защиту и жидкую шлаковую ванну. По мере движения дуги, металл сварочной ванны затвердевает, образуется сварочный шов и шлаковая корка на поверхности шва.

Глубина, на которую расплавляется основной металл, называется глубиной проплавления. Она зависит от режима сварки (силы сварочного тока и диаметра электрода), пространственного положения сварки, скорости перемещения дуги по поверхности изделия (торцу электрода и дуге сообщают поступательное движение вдоль направления сварки и поперечные колебания), от конструкции сварного соединения, формы и размеров разделки свариваемых кромок и т. п. Размеры сварочной ванны зависят от режима сварки и обычно находятся в пределах: глубина до 7 мм, ширина 8-15 мм, длина 10-30 мм. Доля участия основного металла в формировании металла шва обычно составляет 15-35%.

Расстояние от активного пятна на расплавленной поверхности электрода до другого активного пятна дуги на поверхности сварочной ванны называется длиной дуги. Расплавляющееся покрытие электрода образует вокруг дуги и над поверхностью сварочной ванны газовую атмосферу, которая, оттесняя воздух из зоны сварки, препятствует взаимодействиям его с расплавленным металлом. В газовой атмосфере присутствуют также пары основного и электродного металлов и легирующих элементов. Шлак, покрывая капли электродного металла и поверхность расплавленного металла сварочной ванны, способствует предохранению их от контакта с воздухом и участвует в металлургических взаимодействиях с расплавленным металлом.

Кристаллизация металла сварочной ванны по мере удаления дуги приводит к образованию шва, соединяющего свариваемые детали. При случайных обрывах дуги или при смене электродов кристаллизация металла сварочной ванны приводит к образованию сварочного кратера (углублению в шве, по форме напоминающему наружную поверхность сварочной ванны). Затвердевающий шлак образует на поверхности шва шлаковую корку.

Ввиду того, что от токоподвода в электрододержателе сварочный ток протекает по металлическому стержню электрода, стержень разогревается. Этот разогрев тем больше, чем дольше протекание по стержню сварочного тока и чем больше величина последнего. Перед началом сварки металлический стержень имеет температуру окружающего воздуха, а к концу расплавления электрода температура повышается до 500-600° С (при содержании в покрытии органических веществ - не выше 250° С). Это приводит к тому, что скорость расплавления электрода (количество расплавленного электродного металла) в начале и конце различна. Изменяется и глубина проплавления основного металла ввиду изменения условий теплопередачи от дуги к основному металлу через прослойку жидкого металла в сварочной ванне. В результате изменяется соотношение долей электродного и основного металлов, участвующих в образовании металла шва, а значит, и состав и свойства металла шва, выполненного одним электродом. Это - один из недостатков ручной дуговой сварки покрытыми электродами.

Информация о работе Технология литейного производства