Металлургия титана

Автор работы: Пользователь скрыл имя, 27 Марта 2012 в 10:41, реферат

Краткое описание

Титан является одним из наиболее распространенных химических элементов как по содержанию его в земной коре, так и по наличию минералов этого металла в очень многих горных породах.
Известно более 80 минералов, которые по суммарному содержанию титана составляют довольно большую долю в земной коре. Важнейшие минералы титана в основном входят в состав пяти характерных групп – рутила, ильменита, перовскита, ниоботанталотитанатов и сфена, из которых наибольшее значение имеют группы рутила и ильменита.

Прикрепленные файлы: 1 файл

Металлургия титана.doc

— 91.00 Кб (Скачать документ)


Металлургия титана

 

Титаносодержащие минералы

Титан является одним из наиболее распространенных химических элементов как по содержанию его в земной коре, так и по наличию минералов этого металла в очень многих горных породах.

Известно более 80 минералов, которые по суммарному содержанию титана составляют довольно большую долю в земной коре. Важнейшие минералы титана в основном входят в состав пяти характерных групп – рутила, ильменита, перовскита, ниоботанталотитанатов и сфена, из которых наибольшее значение имеют группы рутила и ильменита.

Титановые минералы – ильменит, рутил, сфен – встречаются в рассеянном состоянии почти во всех типах пород – магматических и их эффузивах, в породах метаморфического комплекса (гнейсы, амфиболиты, слюды) , а также в осадочных породах, особенно в глинах, бокситах, песках и песчаниках. Подавляющее число известных минералов титана образовалось в связи с магматогенными процессами, в результате которых формируются минералы этого металла в соединении с кислородом и железом и в меньшей степени – с кальцием и кремнием.

Месторождения и руды титана

Различные по величине и генетическому типу месторождения титана распространены во многих районах земного шара. Несмотря на большое разнообразие этих месторождений, промышленные запасы титана представлены главным образом ильменитом и рутилом – основными минералами, из которых в крупном промышленном масштабе производят титан, его пигментный диоксид и другие химические соединения.

Месторождения титана магматического вида, как правило, приурочены к массивам основных пород нормального и щелочного ряда докембрийского и реже нижнепалеозойского возраста. Указанные месторождения формируются на значительных глубинах, где при содержании в базальтовой магме хотя бы 1% диоксида титана в процессе медленной ее кристаллизации возможно образование участков, значительно обогащенным этим диоксидом и представляющих собой месторождения титановых руд.

Богатые и крупные месторождения этого типа встречаются в глубоко эродированных поясах.

Месторождения титана экзогенного типа приурочены к массивам, подверженным глубокому химическому выветриванию древних метаморфогенных комплексов, содержащих устойчивые соединения титана. В процессе формирования таких месторождений первоначально создаются остаточные элювиально-делювиальные месторождения не обогащенных устойчивыми минералами титана породы, а затем при размыве горных этих кор выветривания формируются богатые россыпи титановых минералов. В структурно-геологическом отношении для поисков богатых и крупных месторождений титана благоприятными являются современные или древние образования прибрежных морских равнин.

Метаморфогенные месторождения титана часто приурочены к титанорудным районам с наличием в них магматогенных и экзогенных месторождений.

Переработка рудного сырья

Промышленные способы получения титана и его основных соединений базируются на использовании в качестве исходного сырья титановых концентратов, содержащих не менее 92-94 % TiO2 в рутиловых концентратах, 52-65 % TiO2 в ильменитовых концентратах из россыпей и 42-47 % TiO2 в ильменитовых концентратах из коренных месторождений.

В России ильменитовые концентраты используются главным образом в качестве сырья для выпуска диоксида титана и металла, а также выплавки ферросплавов и карбидов, а рутиловые – для производства обмазки сварочных электродов.

Около 50 % мирового производства титановых концентратов базируется на переработке руд россыпных месторождений и 50 % – на переработке руд коренных месторождений.

Обогащение руд всех россыпных и большей части руд коренных месторождений осуществляются с использованием в начале процесса наиболее простого и дешевого гравитационного способа. При обогащении сложных коренных руд иногда используют флотацию, что, в частности, относится к переработке руд месторождения титаномагнетиков Телнес в Норвегии.

Процесс нефлотационного обогащения, как правило, осуществляется в две стадии. Первая стадия заключается в первичном гравитационном обогащении, при котором получается черновой коллективный концентрат. Вторая стадия заключается в селекции (доводке) указанного коллективного концентрата методами магнитной и электрической сепарации с получением индивидуальных рутилового, ильменитового, циркониевого, монацитового, дистенсиллиманитового, ставролитового и других концентратов.

В процессах первичного обогащения широкое применение получили усовершенствованные гидроциклоны, многоярусные конические и многосекционные винтовые сепараторы и в меньшей степени концентрационные столы и другое сепарационное оборудование.

Доводка черновых коллективных концентратов основана на использовании в различном сочетании электромагнитной и электростатической сепарации. Наибольшей магнитной восприимчивостью среди входящих в состав коллективных концентратов минералов обладает ильменит и следующий за ним монацит, в то время как рутил и циркон немагнитны.

Селекция входящих в состав коллективных концентратов немагнитных минералов основана на использовании различной их электрической проводимости, по мере убывания которой указанные минералы располагаются в следующий ряд: магнетит–ильменит–рутил–хромит–лейскосен–гранат–монацит–турмалин–циркон–кварц.

Таким образом, если в коллективном концентрате преобладают рутил, циркон и алюмосиликаты, то процесс доводки начинается обычно с передела электростатической сепарации. Если же в коллективном концентрате преобладает ильменит, то технологический процесс доводки начинается с передела магнитной сепарации.

При доводке черновых коллективных концентратов широко применяется винтовые сепараторы, пластинчатые и роликовые магнитные сепараторы мокрого и сухого действия с высокой напряженностью магнитного поля, магнитные сепараторы с перекрещивающимися лентами, а также пневматические и мокрые концентрационные столы и другое оборудование.

В последнее время для повышения извлечения минералов из исходного сырья все чаще используется так называемый процесс оттирки, заключающийся в обработке коллективного концентрата растворами щелочи или слабой плавиковой кислоты при интенсивном перемешивании. При этом с поверхности минералов, в частности рутила и циркона, удаляются железистые и глинистые пленки, затрудняющие селекцию материалов.

Выплавка титановых шлаков

Эту восстановительную плавку проводят в трехэлектродных круглых электропечах мощностью 3,5-20 МВА, по устройству сходных с применяемым для плавки никеля, электротермии цинка или сталеплавильными. Температура передела 1650-1750 градусов. Среда должна быть умеренно-восстановительной, угольная футеровка непригодна. Подину выкладывают притертым магнезитовым кирпичом, стены защищают гарниссажем из тугоплавкого шлака, накопленным по особому режиму. Чугун выпускают через летку, поднятую над подом на 400 мм, а шлак–через шлаковую летку, иногда – вместе с чугуном.

Шихту готовят из концентрата (–3 мм) и антрацита или газового угля (–0,5 мм) , в которых золы не должно быть больше соответственно 10 и 4 %. После перемешивания со связующим – сульфит-целлюлозным щелоком в обогреваемом смесителе шихту брикетируют на валковых прессах. Брикеты теплопроводнее порошка и снижают вынос пыли, но изготовление их обходится дорого, поэтому иногда они составляют только часть загрузки, дополняемую порошком или окатышами.

Задача плавки – получить богатый титановый шлак и чугун, переход железа в который ограничивают: FeO единственное вещество, позволяющее получить умеренно вязкий шлак, при недостатке его потребовался бы излишний перегрев. Чтобы избежать разбавления шлака и лишних расходов, флюсы применяют редко. В отличие от цветной и черной металлургии здесь над чугуном получается сплав титанатов, а не силикатов. Титанаты железа более легкоплавки, чем окислы титана, особенно ильменит (1400 градусов) и Fe2TiO4 (1395 градусов) , они в основном и снижают вязкость шлака.

Восстановление FeO и TiO до металла можно записать в общем виде уравнением (228) , из которого легко получить: pCo2/pCo=a[Fe]/a[Ti]*a(TiO) /a(FeO) =exp(dZFeO–dZTiO) /RT Распределение железа и титана между чугуном и шлаком – функция разности сродства этих металлов к кислороду и зависит от парциального давления окиси углерода в порах шихты, определяемого расходом восстановителя и температурой.

В действительности равновесие не достигается из-за быстрого восстановления железа, накопления чугуна в начале передела и недостатка времени для последующего выравнивания состава фаз.

Плавку ведут периодически или либо непрерывно, в первом случае в шлаках удается оставить всего 5% окиси железа, а во втором 8-15%; непрерывный передел производительнее и полнее автоматизирован.

Для увеличения проплава и снижения расхода энергии шихту предварительно подогревают в трубчатых печах, сжигая мазут или газ. При этом на 1т шлака суммарно затрачивают 1750 кВт*ч.

Производство четыреххлористого титана

Под термином “хлорирование” подразумевают обычно процесс, в котором хлор в том или ином виде взаимодействует с окислами элементов или другими их соединениями, образуя хлориды или оксихлориды, выделяемые в форме индивидуальных химических веществ или их смесей. Преимущество процесса хлорирования перед другими металлургическими процессами заключается в том, что получаемые при этом хлориды элементов имеют температуру плавления и кипения значительно ниже температур плавления и кипения окислов или других соединений соответствующих элементов. Это важное свойство хлоридов позволяет выделить те или иные полезные компоненты сырья при более низких температурах и с использованием более простых технологических приемов. Резкое различие физических свойств хлоридов – температуры плавления, кипения, сублимации – позволяет разделить отдельные элементы или группы элементов обычной термической разгонкой с последующей фракционной конденсацией. В производстве титана, циркония, ниобия применение хлорирования окисных соединений этих элементов является основным способом получения этих элементов.

В результате хлорирования происходит либо окисление металла хлором, либо замещение кислорода оксидов хлором. В общем виде схема этого процесса может быть выражена такими уравнениями: Me + Cl2= MeCl2; [MexOy] + y(Cl2) = x(MeCl2y/x) + (y/2) (O2) .

Следует подчеркнуть одну существенную особенность процесса хлорирования – огромную скорость химических реакций и высокую степень хлорирования всех компонентов. Это значительной степени облегчает задачу управления процессом и сводит ее фактически к регулированию физических параметров: газодинамики процесса, размеров поверхностей контактируемых фаз, количества подводимого и отводимого тепла. При этом на практике стараются химические факторы стабилизировать за счет постоянства температурного режима и химического состава исходного сырья.

В сложившейся многолетней отечественной и зарубежной промышленной практике температурный режим процесса хлорирования поддерживают в интервале температур 973–1100 К для хлораторов с солевой ванной и 1100–1500 К для шахтных хлораторов. Эти интервалы считаются общепринятыми, и для их поддержания в конструкцию хлораторов вводятся дополнительные энергоподводящие или энергоотводящие элементы или же они корректируются соответствующими технологическими приемами. Вопрос об оптимальной температуре так же как и вопрос об максимальной (адиабатной) температуре процессов хлорирования, имеет важное теоретическое и практическое значение.

Принципиальная схема производства

Процесс производства четыреххлористого титана состоит из пяти основных переделов: подготовки сырья, хлорирования, конденсации продуктов хлорирования, очистки четыреххлористого титана и переработки отходов.

Подготовка сырья заключается в приготовлении брикетов из титансодержащего материала и кокса, пригодных для хлорирования. Этот передел включает операции дробления, размола, смешения, брикетирования и прокалки брикетов.

Хлорирование осуществляется в различных аппаратах: а) со статическим или неподвижным слоем шихты (шахтные электропечи, шахтные хлораторы) ; б) с жидкой ванной из расплавленных хлоридов щелочных или щелочноземельных металлов (солевой хлоратор) ; в) с псевдокипящим слоем шихты.

Для хлорирования титансодержащих материалов (титансодержащие шлаки, искусственный и естественный рутил, некондиционные отходы титановых сплавов) применяют как 100% компрессированный хлор, так и разбавленный воздухом анодный хлоргаз, получаемый в процессе электролиза магния и натрия. В процессе хлорирования оксиды титансодержащих минералов взаимодействуют с хлором и углеродом и переводятся в хлориды. Процесс хлорирования проводят при 900–1500 К. Назначение конденсации – отделить четыреххлористый титан от хлоридов, примесных элементов и получить технический четыреххлористый титан.

Очистка технического четыреххлористого титана. Здесь происходит уже окончательная очистка четыреххлористого титана от растворенных в нем примесей.

Переработка отходов. Чем богаче материал по содержанию в нем титана, тем проще его перерабатывать путем хлорирования. Однако с повышением чистоты исходного сырья стоимость его возрастает. Поэтому для промышленного производства четыреххлористого титана применение титансодержащих материалов высокой чистоты (например титана) экономически не всегда выгодно.

Подготовка сырья

Титановые шлаки, получающиеся в результате руднотермической восстановительной плавки железо-титановых концентратов, дробят в щековой и конусной дробилках. После измельчения шлаки размалывают в шаровых мельницах. Размолотый шлак должен содержать фракций +0.1 мм не более 10% (по массе) и металлического железа менее 4%. После удаления с помощью магнитной сепарации металлического железа размолотый шлак поступает на хлорирование (при использовании солевых хлораторов или аппаратов кипящего слоя) или в отделение подготовки шихты (брикетирование, агломерация, окомкование) при использовании шахтных хлораторов с подвижным слоем.

Аппараты для хлорирования. Хлорирование в шахтных электропечах и шахтных хлораторах с подвижным слоем.

Шахтная электропечь. На первом этапе развития титановой промышленности в качестве основного промышленного аппарата использовались шахтные электропечи (ШЭП) для производства магния. В титановом производстве их конструкция подвергалась значительным изменениям. Шахтная электоропечь состоит из двух зон – верхней и нижней. В верхнюю зону через свод печи загружают шихту; в нижнюю зону, оборудованную электродами, загружают угольную насадку и подают хлор. Шахтные электропечи незаменимы при использовании титаносодержащего сырья с компонентами, хлориды которых низколетучи (например, перовскиты, титаномагнетиты и др.) . Шахтная электропечь сыграла важную роль создании и развитии отечественной титановой промышленности.

Информация о работе Металлургия титана