Курс лекций по "Материаловедению"

Автор работы: Пользователь скрыл имя, 14 Июня 2013 в 15:42, курс лекций

Краткое описание

Атомно-кристаллическое строение металлов. Анализ диаграммы «железо - углерод». Основа термической обработки. Технология термической обработки.

Прикрепленные файлы: 1 файл

lekcii_po_materialovedeniyu.doc

— 379.00 Кб (Скачать документ)

При поверхностной закалке  нагрев только поверхности можно  проводить :

- в расплавленных металлах  или солях;

- пламенем ацетелено-кислородной или газовой горелки;

- в электролитах;

- лучом лазера;

- электротоком, индуцируемым  в поверхностных слоях детали. Такая закалка называется индукционной или высокочастотной закалкой.

Режим поверхностной  закалки: нагрев поверхностного слоя детали до температуры закалки (выше Aс3), быстрое охлаждение в закалочной среде (в воде). В результате такой обработки увеличивается твердость поверхностного слоя детали и повышается  его сопротивление истиранию.

 

Участок I, нагретый выше Ас3, получает полную закалку. Участок II , нагретый между Ас1 и Ас3, получает неполную закалку. Участок III не нагревается и не получает закалки.

Толщина закаленного  слоя при поверхностной закалке  определяется по формуле:

δ = 500 √ ρ / μ * f,

где ρ - удельное сопротивление детали, Ом*см;

μ - магнитная проницаемость, Гс/э;

f  -  частота тока, Гц.

 

Для нагрева детали используют специальные машинные генераторы (с частотой тока от 500 до 15 000 Гц) или ламповые генераторы (с частотой тока до 10 000 000 Гц).

Время нагрева при  поверхностной закалке составляет 3-5 с. После нагрева следует охлаждение в закалочной среде (в воде). 

В результате быстрого душеобразного  охлаждения (закалки) получают мелкоигольчатый  мартенсит с малой хрупкостью и повышенной прочностью. Для закалки  ТВЧ используют углеродистые стали  с содержанием углерода более 0,40 % С. Температура нагрева при ТВЧ  выше, чем в обычных случаях и при такой обработке получается мелкое действительное зерно аустенита.

К преимуществам закалки  ТВЧ относятся:

- высокая производительность;

- отсутствие окисления поверхности;

- мелкозернистая структура  (тонкий мартенсит) в поверхностном слое;

- автоматизация процесса;

- выборочная закалка элементов детали.

Недостатками закалки  ТВЧ являются высокая стоимость  оборудования и  применение только в крупносерийном производстве.

 

9.4. Закаливаемость и прокаливаемость

 

Выбор охлаждающей среды при термической обработке определяется закаливаемостью и прокаливаемостью стали.

Закаливаемость - способность стали принимать закалку, т.е. приобретать при закалке высокую твердость поверхности (определяется содержанием углерода в стали; при содержании углерода ниже 0,2 % сталь практически не закаливается).

Прокаливаемость - способность стали получать закаленный слой с мартенситной или троостито-мартенситной структурой с высокой твердостью на ту или иную глубину. Глубиной считают расстояние от поверхности до слоя, где в структуре содержится 50 % мартенсита + 50 % троостита.

Чем больше устойчивость переохлажденного аустенита, чем меньше критическая скорость закалки, тем  больше прокаливаемость стали (рис. 9.6).

 

Характеристикой прокаливаемости  является  критический диаметр (Дкр).

Критический диаметр - это максимальный диаметр прутка, прокаливающийся насквозь в данном охладителе.

Определяют прокаливаемоеть  экспериментально. Основной способ определения  прокаливаемости - стандартный метод  торцевой закалки (ГОСТ 5657-69 ) (рис.9.7).

 

Метод торцевой закалки  для определения прокаливаемости  заключается в следующем:

- нагревают образец до заданной температуры;

- охлаждают с торца. При таком охлаждении нижний торец охлаждается с максимальной скоростью и скорость охлаждения убывает по мере удаления от торца;

- измеряют твердость  по длине образца, начиная от  торца;

- изображают графически результаты промера твердости на торце и по длине образца, определяют зону, содержащую 50 % мартенсита + 50 % троостита;

- определяют Дкр по номограммам (рис. 9.8).

 

Прокаливаемость стали  прямо пропорциональна содержанию в ней углерода. Легирующие элементы, входящие  в состав стали, уменьшают критическую скорость закалки и увеличивают прокаливаемость.

 

10. ВНУТРЕННИЕ НАПРЯЖЕНИЯ 

 

Напряжения, возникающие между микро- или макроэлементами тела, вследствие воздействия на это тело внешних (давление) или внутренних (при тепловом воздействии, фазовом превращении) сил, вызывающих деформацию, называются внутренними напряжениями.

Термические напряжения возникают при неравномерном нагреве или охлаждении. В соответствии с названием технологического процесса напряжения бывают литейные, сварочные, закалочные, шлифовочные.

Закалочные  напряжения возникают в материале при охлаждении его с температуры закалки; их величина зависит от состава материала и условий закалки. Закалочные напряжения делятся на напряжения I, II и III рода.

Напряжения nepвoгo рода - это зональные остаточные напряжения, уравновешивающиеся в зонах, соизмеряемых с размерами всего тела или отдельных макрочастей. Образуются такие напряжения из-за разницы температур по сечению детали при охлаждении и различных по времени протекания фазовых превращений в разных частях детали.

Напряжения  второго рода – это остаточные напряжения, уравновешивающиеся в объемах, соизмеримых с размерами зерна металла.

Напряжения  третьего рода – это напряжения, возникающие при фазовых превращениях в металлах и сплавах в твердом состоянии, вследствие различий в удельных объемах образующихся и исходных фаз. Удельный объем аустенита при содержании углерода от 0,2-1,4 % составляет 0,12227-0,12528 см3/г, а мартенсита - 0,12708-0,13061 см3/г.

Для снятия внутренних напряжений после закалки проводят отпуск.

 

11. ОТПУСК

 

Отпуском называется нагрев закаленной стали до температуры ниже критической точки А1 (рис.7.1), выдержка при этой температуре с последующим охлаждением на воздухе. В данном случае исходной структурой является структура закаленной стали, состоящая из тетрагонального мартенсита и остаточного аустенита, которые являются неустойчивыми структурными составляющими. Переход стали в устойчивое состояние сопровождается превращениями мартенсита и остаточного аустенита. Эти превращения имеют диффузионный характер и скорость их протекания в основном определяется температурой нагрева при отпуске.

Отпуск относится к  окончательной термической обработке.

Целью отпуска являются: изменение строения и свойств закаленной стали, повышение вязкости и пластичности, уменьшение твердости, снижение внутренних напряжений.

В зависимости от температуры нагрева различают три вида отпуска:

- низкотемпературный отпуск, при котором проводят нагрев стали до 150-250 оС и выдерживают 1-3 часа. В результате получают структуру отпущенного (кубического) мартенсита и снимают закалочные напряжения.

Низкий отпуск проводят для инструментальных сталей, сталей после цементации, сталей после поверхностной закалки;

- среднетемпературный отпуск, при котором проводят нагрев стали до 250-400 оС и выдерживают около 1 часа. В результате получают структуру троостита (бейнита). Такой отпуск проводят при изготовлении пружин и рессор;

- высокотемпературный отпуск, при котором проводят нагрев до 450-650 оС и  выдерживают около 1 часа. В результате получают структуру сорбита. Проводят такой отпуск для деталей машин, работающих в условиях ударных нагрузок.

При закалке без полиморфного превращения  применяется отпуск, который называется старением. Главный процесс при старении – это распад пересыщенного твердого раствора, полученного при закалке. После старения  увеличиваются прочность и твердость, уменьшается пластичность, стабилизируются свойства.

Основными видами старения являются:

- естественное (выдержка при комнатной температуре);

- искусственное (выдержка при повышенной температуре);

- деформационное (сплав после закалки подвергают деформации).

Применяют старение при  термической обработке алюминиевых  сплавов, сплавов меди, жаропрочных  сплавов. 

 

12. ХИМИКО-ТЕРМИЧЕСКАЯ ОБРАБОТКА (ХТО)

 

Химико-термическая обработка (ХТО) - это термическая обработка, сочетающая тепловое воздействие с химическим, в результате чего изменяется состав и структура в поверхностных слоях, а иногда и по всему объему изделия.

В результате ХТО происходит изменение свойств поверхностного слоя детали, т.е. повышаются твердость, износостойкость, жаростойкость, окалиностойкость, коррозионная стойкость.

Обычно при ХТО деталь помещают в среду, богатую элементом (карбюризатор), который диффундирует в металл.

При ХТО происходят три  элементарных процесса:

- диссоциация, когда под действием температуры в карбюризаторе происходит распад молекул и образование активных атомов диффундирующего элемента;

- адсорбция, которая происходит на границе карбюризатор – деталь и состоит в поглощении (растворении) поверхностью свободных активных атомов, получившихся после диссоциации;

- диффузия, в результате которой происходит проникновение насыщающего элемента вглубь металла.

В зависимости от диффундирующего  насыщающего поверхность элемента различают следующие виды ХТО:

- цементацию (углерод);

- азотирование (азот);

- нитроцементацию (азот + углерод);

- сульфаазотирование (сера + азот);

- алитирование (алюминий);

- хромирование (хром).

 

12.1. Цементация стали

 

При цементации происходит поверхностное насыщение стали углеродом, в результате чего получается высокоуглеродистый поверхностный слой, а сердцевина стали остается мягкой и вязкой, несмотря на то, что сталь после цементации подвергается закалке.

Цементация выгодно  распределяет углерод от поверхности, а термическая обработка (закалка) упрочняет деталь, поверхность и сердцевину.

Поверхность стали после  такой обработки имеет высокую  твердость и износостойкость  при вязкой сердцевине.

Цементации подвергают низкоуглеродистые и легированные стали с содержанием углерода меньше 0,3 %, которые должны обладать:

- закаливаемостью на 29-43 HRC (углеродистые 08, 10, 15, 20; легированные 20ХГТ, 12ХН2);

- прокаливаемостью, обеспечивающей  требуемую структуру сердцевины;

- наследственно-мелкозернистостью;

- хорошей технологичностью при насыщении углеродом и последующей термической обработке и обработке резанием.

Различают два вида цементации: твердую и газовую.

Долговечность и надежность цементированных деталей и допустимый уровень их нагружения при эксплуатации определяются следующими параметрами:

- составом стали;

- толщиной и структурой цементированного слоя (рис.12.1);

- наличием дефектов в слое;

- твердостью поверхностных слоев и сердцевины.

 

На цементацию детали поступают с припуском на шлифование 0,05- 0,1мм; температура цементации выше Ас3 (930-950 оС). В твердом карбюризаторе 1 мм слоя образуется в течение 8-10 ч, в газовом - 1 мм образуется за 6 - 7 ч.

Твердый карбюризатор - древесный активированный уголь, каменноугольный полукокс и торфяной кокс с добавками активизаторов (BаCО3 и Na2СО3) в количестве 10 - 40 % от веса угля.

Газовый карбюризатор - природный газ и жидкие углеводороды.

Для неответственных  деталей закалка их может производиться  сразу  с температур цементации (рис. 12.2,а) или после повторного нагрева  до температуры выше Ас1 на 30 оС и охлаждении в воде (рис. 12.2, б).

Для ответственных деталей  после  цементации делают двойную закалку  с нагревом выше Ас1 + 30 оС и охлаждением в воде (рис. 12.2, в).

После любого режима термической обработки  делается низкий отпуск (160-180 оС).

Глубина цементированного слоя составляет 0,5 - 2,0 мм (иногда до 4 мм) с концентрацией углерода 0,8 - 1,2 % ( рис. 12.1).

За глубину цементированного слоя принимают глубину слоя со структурой заэвтектоидной, эвтектоидной и доэвтектоидной стали с содержанием углерода более 0,4 %  (рис.12.1).

 

При цементации получаем твердость поверхностного цементированного слоя углеродистой стали 60-64 HRC (900HV), для легированной 58-61HRC (снижение твердости происходит за счет наличия в структуре остаточного аустенита); твердость сердцевины составляет 20-35HRC.

 

 

 

12.2. Азотирование стали

 

Азотирование – это процесс насыщения поверхностного слоя азотом.

Цель такой обработки  изделия: получение высокой твердости, износостойкости, повышенной усталостной  прочности, сопротивления коррозии. Карбюризатором является аммиак (NH3 → 3H + N).

Информация о работе Курс лекций по "Материаловедению"