Кристаллизация металлов

Автор работы: Пользователь скрыл имя, 08 Января 2014 в 15:53, реферат

Краткое описание

Когда говорят о кристаллизации, обычно подразумевают процесс превращения воды в лед. Общие закономерности этого процесса хорошо известны, но истинные перемещения атомов, происходящие при этом, еще неполностью выяснены. В этом и заключается актуальность данной темы реферата. Металлы также могут переходить из жидкого состояния в твердое, но, как и в случае превращения воды в лед, механизм этого процесса не вполне ясен. Это одновременно удивительно и печально, так как металл на определенных стадиях изготовления из него большинства деталей или изделий претерпевает переход из жидкого состояния в твердое. Когда деталь отлита в форму, структура, образующаяся сразу после затвердевания, определяет многие свойства изделия. Это справедливо даже для слитков, несмотря на распространенное, но неправильное мнение, что дефекты могут быть ликвидированы при ковке.

Содержание

Введение………………………………………………………………………………3

1.1. Понятие кристаллизации.......................................................................................5

1.2. Кристаллическое строение металлов …………………………………………..7

1.3. Гомогенная (самопроизвольная) кристаллизация……………………………10

1.4. Гетерогенная (несамопроизвольная) кристаллизация…………………….…12

Заключение…………………………………………………………………………14

Список литературы……………………………………………………………...…..15

Прикрепленные файлы: 1 файл

кристалы.docx

— 104.99 Кб (Скачать документ)

Для металлов, которые в обычных условиях кристаллизации не склонны к большим переохлаждениям, как правила характерны восходящие ветви кривых. Это значит, что  при равновесной температуре, когда  степень переохлаждения равна нулю, скорость образования зародышей  и скорость роста также равны  нулю, т.е. кристаллизация не происходит. При небольших степенях переохлаждения, когда велик зародыш критического размера, а скорость образования зародыша мала, при затвердевании формируется крупнокристаллическая структура. Небольшие степени переохлаждения достигаются при заливке жидкого металла в форму с низкой теплопроводностью (земляная, шамотовая) или в подогретую металлическую форму. Увеличение переохлаждения происходит при заливке жидкого металла в холодные металлические формы, а также при уменьшении толщины стенок отливки. Поскольку при этом скорость образования зародышей увеличивается более интенсивно, чем скорость их роста, получаются более мелкие кристаллы.

Изучение  гомогенного зарождения кристаллов наталкивается на серьезные экспериментальные  трудности, связанные с получением металлов, очищенных от всех инородных  частиц. Однако эти трудности могут  быть устранены при делении объема металла на очень малые капли, изолированные друг от друга. Если в  объеме жидкого металла и содержится небольшое число частиц примеси, то некоторые из капель не будут  содержать посторонних частиц, и  в них можно наблюдать гомогенное зарождение кристаллов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. Гетерогенная (несамопроизвольная) кристаллизация [2,4].

 

В реальных условиях процессы кристаллизации и  характер образующейся структуры в  большей мере зависят от имеющихся готовых центрах кристаллизации. Такими центрами, как правило, являются тугоплавкие частицы неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется гетерогенной или несамопроизвольной. При несамопроизвольной кристаллизации роль зародышей могут играть и стенки формы. Образование зародышей на имеющейся в расплаве поверхности раздела — стенке сосуда или частицах нерастворимой примеси (подложке) — может произойти, если эта поверхность смачивается жидким металлом. В этом случае образование зародышей на ней потребует меньшей затраты энергии. В связи с этим краевой угол между подложкой и находящимся на ней зародышем твердой фазы имеет важное теоретическое значение, хотя это и не может быть широко использовано на практике. Если краевой угол мал, то поверхностная энергия границы раздела между твердой фазой и подложкой также мала. В этом случае из атомов жидкого металла легко образуются зародыши твердой фазы на поверхности подложки. Эффективность любой частицы как катализатора зарождения зависит от краевого угла, который в свою очередь определяется такими факторами, как близость структур кристаллических решеток подложки и твердой фазы и химическая природа поверхности подложки. Если краевой угол мал, то зарождение происходит при незначительном переохлаждении, если же краевой угол велик, то необходимо большее переохлаждение.

Большинство применяемых в промышленности металлов содержит достаточное количество различных  нерастворимых примесей, и зарождение кристаллов в расплавах этих металлов происходит при переохлаждениях 1 — 10° С. Если количество имеющихся в жидком металле нерастворимых примесей недостаточно для эффективного развития процессов гетерогенного зарождения, в расплав могут быть введены так называемые катализаторы зарождения.

Катализаторы  зарождения — это вещества, которые  намеренно вводятся в жидкий металл для стимулирования процессов образования  зародышей. Эти вещества могут быть соединениями, нерастворимыми в расплаве и имеющими с образующейся твердой  фазой малый краевой угол; они  могут быть также и химическими  элементами, которые, реагируя с жидким расплавом, образуют соединения, способствующие развитию процессов зарождения. Как  правило, механизм действия катализаторов  в расплавах конкретных металлов бывает заранее неизвестен, и на практике катализаторы подбираются  методом проб и ошибок.

Может возникнуть вопрос: какими преимуществами обладает металл, в котором имело место гетерогенное зарождение кристаллов? Для чего вводить катализаторы зарождения, если образование зародышей все равно будет иметь место в результате действия инородных частиц, уже имеющихся в расплаве, когда переохлаждение будет достаточным для их действия? Ответ на вопрос заключается в том, что количество возникших зародышей твердой фазы определяет конечную структуру и, таким образом, свойства затвердевшего металла. Каждое зерно или кристалл растет из одного зародыша, и поэтому число зародышей, возникающих в расплаве, определяет размеры образовавшегося при кристаллизации зерна. Для достижения высоких механических и, в частности, прочностных свойств желательно получение мелкозернистой структуры, а для этого необходимо, чтобы в расплаве возникло как можно большее число центров кристаллизации, а скорость охлаждения должна быть подобрана таким образом, чтобы возникшие центры кристаллизации имели возможность расти. Скорость охлаждения играет весьма существенную роль в процессах зарождения, так как образование центров кристаллизации происходит не одновременно во всем расплаве из-за того, что не вся жидкость находится при одной и той же температуре, или потому, что не все центры кристаллизации образуются при одной и той же степени переохлаждения. Первые образовавшиеся кристаллы будут расти до тех пор, пока не встретятся с другими; если время между актами возникновения центров кристаллизации достаточно велико, то кристаллы вырастают большими и при своем росте могут захватить некоторое количество частиц, которые могли бы стать центрами кристаллизации. При большой скорости охлаждения значительное число имеющихся в расплаве частиц может стать центрами кристаллизации до того, как они будут захвачены растущими кристаллами.

  Добавление в расплав примесей, являющихся катализаторами, позволяет управлять процессом зарождения кристаллов. Наиболее распространенными методами влияния на структуру литого металла являются подбор оптимальной скорости охлаждения и введение в расплав катализаторов зарождения; в последнее время для этой цели начинает применяться вибрация. Вибрирование отливки во время кристаллизации приводит к образованию мелкозернистой структуры, так как вибрация вызывает увеличение числа центров кристаллизации за счет разламывания растущих кристаллов или повышения каталитической способности имеющихся в расплаве частиц. Однако этот частный вопрос, как, впрочем, и вся теория зарождения кристаллов, еще нуждается в дальнейшем развитии.

 

 

 

 

 

 

 

 

 

 

 

Заключение [3,4].

 

В ходе изучения данной темы реферата были рассмотрены  следующие понятия:

1) кристаллизация – процесс перехода из жидкого состояния в твердое, в результате которого образуется кристаллическая решетка, возникают кристаллы;

2) кристаллическая решетка - это мысленно проведенные в пространстве прямые линии, соединяющие ближайшие атомы и проходящие через их центры, относительно которых они совершают колебательные движения;

3) гомогенная кристаллизация – это кристаллизация, в которой зародышами кристаллов в жидком растворе являются устойчивые группы атомов, расположение которых близко к кристаллическому;

4) гетерогенная кристаллизация – это кристаллизация, в которой для получения мелкого зерна при затвердевании металла используют модифицирование, т.е. введение в жидкий металл тугоплавких мелких частичек, служащих дополнительными центрами кристаллизации.

Было  изучено кристаллическое строение  металлов и выявлено, что скопление большого количества кристаллических решеток образует кристалл, а металл состоит из множества кристаллов. Свойства кристаллов зависят от расположения атомов внутри них.

Кристаллизация  протекает вследствие перехода к  более устойчивому состоянию  с меньшей свободной энергией. Свободные энергии жидкого и  твердого состояний уменьшаются  с повышением температуры.

Рост кристаллов заключается в том, что к их зародышам присоединяются все новые  атомы жидкого металла. Сначала  кристаллы растут свободно, сохраняя правильную геометрическую форму, но это  происходит только до момента встречи  растущих кристаллов. В месте соприкосновения  кристаллов рост отдельных их граней прекращается, и развиваются не все, а только некоторые грани кристаллов. В результате кристаллы не имеют  правильной геометрической формы.

Так же мною было отмечено, что изучение гомогенного зарождения кристаллов наталкивается на серьезные экспериментальные трудности, связанные с получением металлов, очищенных от всех инородных частиц. Однако эти трудности могут быть устранены при делении объема металла на очень малые капли, изолированные друг от друга. Если в объеме жидкого металла и содержится небольшое число частиц примеси, то некоторые из капель не будут содержать посторонних частиц, и в них можно наблюдать гомогенное зарождение кристаллов.

Подводя итоги, можно сделать вывод, что  вся теория зарождения кристаллов, еще нуждается в дальнейшем развитии.

 

 

 

 

 

Список  литературы

 

1. Гуляев А.П. «Металловедение». -  М.: Металлургия, 1986

 

2. Металлургия  и материаловедение: Справочник./Под ред. П.И. Полухина и М.Л. Бернштейна. – М.: Металлургия, 1982

 

3. Материаловедение: Уч./Под общ. Ред. Б.Н. Арзамасова. – 2-е изд., испр. и доп. – М.: Машиностроение, 1986

 

4. Фетисов  Г.П. «Материаловедение и технология  металлов». – М.: Высшая школа, 2001

 

5. Гормаков А.Н. «Материаловедение. Учебно-методическое пособие». – Томск.: ТПУ, 2003




Информация о работе Кристаллизация металлов