Контрольная работа по «Материаловедению»

Автор работы: Пользователь скрыл имя, 18 Ноября 2011 в 16:34, контрольная работа

Краткое описание

Характерные свойства металлов
Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
Хорошая электропроводность
Возможность лёгкой механической обработки (см.: пластичность; однако некоторые металлы, например германий и висмут, непластичны)
Высокая плотность (обычно металлы тяжелее неметаллов)
Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
Большая теплопроводность
В реакциях чаще всего являются восстановителями

Прикрепленные файлы: 1 файл

`1.doc

— 812.00 Кб (Скачать документ)

45.  Назначить режим  для стали 35 построить  график, отпуск высокий,  закалка в одном  охладителе. 

56. Алюминиевые сплавы, их группы, характеристика  марки по стандарту  и применения в  автотракторном и  сельскохозяйственном  машиностроении.

Получение

Современный метод  получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Для производства 1 т алюминия чернового требуется 1,920 т глинозёма, 0,065 т криолита, 0,035 т фторида алюминия, 0,600 т анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока[2].

  Физические свойства

Микроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55 × 37 мм.

Металл серебристо-белого цвета, лёгкий, 
плотность — 2,7 г/см³, 
температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C, 
удельная теплота плавления — 390 кДж/кг, 
температура кипения — 2500 °C, 
удельная теплота испарения — 10,53 МДж/кг, 
временное сопротивление литого алюминия — 10…12 кг/мм², деформируемого — 18…25 кг/мм², сплавов — 38…42 кг/мм².

Твёрдость по Бринеллю — 24…32 кгс/мм², 
высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу. 
Модуль Юнга — 70 ГПа.

Алюминий обладает высокой электропроводностью (0,0265 мкОм·м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражательной способностью. 
Слабый
парамагнетик
Температурный коэффициент линейного расширения 24,58×10−6 К−1 (20…200 °C). 
Температурный коэффициент электрического сопротивления 2,7×10−8K−1.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью  и магнием (дюралюминий) и кремнием (силумин).

  Нахождение в природе

Природный алюминий состоит практически полностью  из единственного стабильного изотопа  27Al со следами 26Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры[3].

В природе алюминий в связи с высокой химической активностью встречается почти  исключительно в виде соединений. Некоторые из них:

  • Бокситы — Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3)
  • Нефелины — KNa3[AlSiO4]4
  • Алуниты — (Na,K)2SO4·Al2(SO4)3·4Al(OH)3
  • Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)
  • Корунд (сапфир, рубин, наждак) — Al2O3
  • Полевые шпаты — (K,Na)2O·Al2O3·6SiO2, Ca[Al2Si2O8]
  • Каолинит — Al2O3·2SiO2 · 2H2O
  • Берилл (изумруд, аквамарин) — 3ВеО · Al2О3 · 6SiO2
  • Хризоберилл (александрит) — BeAl2O4.

Тем не менее, в  некоторых специфических восстановительных условиях возможно образование самородного алюминия[4].

В природных  водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в поверхностных водных объектах России колеблются от 0,001 до 10 мг/л, в морской воде 0,01 мг/л[5].

  Химические свойства

Гидроксид алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует  с простыми веществами:

  • с кислородом, образуя оксид алюминия:

    4Al + 3O2 = 2Al2O3

  • с галогенами (кроме фтора)[6], образуя хлорид, бромид или иодид алюминия:

    2Al + 3Hal2 = 2AlHal3 (Hal = Cl, Br, I)

  • с другими неметаллами реагирует при нагревании:
    • с фтором, образуя фторид алюминия:

    2Al + 3F2 = 2AlF3

    • с серой, образуя сульфид алюминия:

    2Al + 3S = Al2S3

    • с азотом, образуя нитрид алюминия:

    2Al + N2 = 2AlN

    • с углеродом, образуя карбид алюминия:

    4Al + 3С = Al4С3

Сульфид и карбид алюминия полностью гидролизуются:

    Al2S3 + 6H2O = 2Al(OH)3 + 3H2S

    Al4C3 + 12H2O = 4Al(OH)3+ 3CH4

Со сложными веществами:

  • с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):

    2Al + 6H2O = 2Al(OH)3 + 3H2

  • со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

    2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H2

    2(NaOH•H2O) + 2Al = 2NaAlO2 + 3H2

  • Легко растворяется в соляной и разбавленной серной кислотах:

    2Al + 6HCl = 2AlCl3 + 3H2

    2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2

  • При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:

    2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O

    Al + 6HNO3(конц) = Al(NO3)3 + 3NO2 + 3H2O

  • восстанавливает металлы из их оксидов (алюминотермия):

    8Al + 3Fe3O4 = 4Al2O3 + 9Fe

    2Al + Cr2O3 = Al2O3 + 2Cr

  Производство

    Основная  статья: Алюминиевая промышленность

производство  алюминия

Одна красивая, но, вероятно, неправдоподобная легенда  из «Historia naturalis» гласит, что однажды к римскому императору Тиберию (42 год до н. э. — 37 год н. э.) пришёл ювелир с металлической, небьющейся обеденной тарелкой, изготовленной, якобы из глинозёма — Al2O3. Тарелка была очень светлой и блестела, как серебро. По всем признакам она должна быть алюминиевой. При этом ювелир утверждал, что только он и боги знают, как получить этот металл из глины. Тиберий, опасаясь, что металл из легкодоступной глины может обесценить золото и серебро, приказал, на всякий случай, отрубить человеку голову. Очевидно, данная легенда весьма сомнительна, так как самородный алюминий в природе не встречается в силу своей высокой активности и во времена Римской империи не могло быть технических средств, которые позволили бы извлечь алюминий из глинозёма.

Лишь почти  через 2000 лет после Тиберия — в 1825 году, датский физик Ханс Христиан Эрстед получил несколько миллиграммов металлического алюминия, а в 1827 году Фридрих Вёлер смог выделить крупинки алюминия, которые, однако, на воздухе немедленно покрывались тончайшей пленкой оксида алюминия.

До конца XIX века алюминий в промышленных масштабах не производился.

Только в 1854 году Анри Сент-Клер Девиль (его исследования финансировал Наполеон III, рассчитывая, что алюминий пригодится его армии[7][8]) изобрёл первый способ промышленного производства алюминия, основанный на вытеснении алюминия металлическим натрием из двойного хлорида натрия и алюминия NaCl·AlCl3. В 1855 году был получен первый слиток металла массой 6—8 кг. За 36 лет применения, с 1855 по 1890 год, способом Сент-Клер Девиля было получено 200 тонн металлического алюминия. В 1856 году он же получил алюминий электролизом расплава хлорида натрия-алюминия.

Информация о работе Контрольная работа по «Материаловедению»